一种基于CNN的SAR图像变化检测方法

徐真 王宇 李宁 张衡 张磊

徐真, 王宇, 李宁, 等. 一种基于CNN的SAR图像变化检测方法[J]. 雷达学报, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
引用本文: 徐真, 王宇, 李宁, 等. 一种基于CNN的SAR图像变化检测方法[J]. 雷达学报, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Xu Zhen, Wang Robert, Li Ning, et al.. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Citation: Xu Zhen, Wang Robert, Li Ning, et al.. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075

一种基于CNN的SAR图像变化检测方法

DOI: 10.12000/JR17075
基金项目: 国家重点研发计划(2017YFB0502700),中科院国防科技创新基金面上项目
详细信息
    作者简介:

    徐 真(1990–),女,山东人,博士研究生,研究方向为合成孔径雷达图像处理技术。E-mail: xuzhen0518@163.com

    王 宇(1980–),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail: yuwang@mail.ie.ac.cn

    李 宁(1987–),男,安徽人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为多模式合成孔径雷达成像及其应用技术。E-mail: lining_nuaa@163.com

    张 衡(1990–),男,山东人,博士研究生,研究方向为双基合成孔径雷达成像技术。E-mail: caszhmail@163.com

    张 磊(1985–),男,吉林人,毕业于中国科学院电子学研究所,获博士学位,现为中国科学院电子学研究所助理研究员,研究方向为高分辨率合成孔径雷达成像技术。E-mail: 314forever@163.com

    通讯作者:

    李宁   lining_nuaa@163.com

  • 中图分类号: TP753

A Novel Approach to Change Detection in SAR Images with CNN Classification

Funds: National Key R&D Program of China (2017YFB0502700), National Defense Innovation Surface Program of Chinese Academy of Sciences
  • 摘要:

    该文提出了一种基于卷积神经网络(CNN)及有效图像预处理的合成孔径雷达(SAR)图像变化检测方法。为了验证方法的有效性,以2011年日本仙台地区地震导致的城区变化为例进行了研究。在预处理中分别利用DEM模型以及Otsu方法对SAR图像中的山体和水体进行了提取和去除。利用多层卷积神经网络从SAR图像中自动学习目标特征,再利用学习到的特征对图像进行分类。训练集和测试集的分类精度分别达到了98.25%和97.86%。利用图像差值法得到分类后的SAR图像变化检测结果,并验证了该方法的准确性和有效性。另外,文中给出了基于CNN的变化检测方法和传统方法的对比结果。结果表明,相对于传统方法,基于CNN的变化检测方法具有更高的检测精度。

     

  • 图  1  处理流程图

    Figure  1.  Processing chain

    图  2  CNN结构图

    Figure  2.  The structure of CNN

    图  3  原始SAR图像及分类结果

    Figure  3.  Raw SAR images and the classification results

    图  4  不同类别区域所占比例

    Figure  4.  Distribution of categories

    图  5  变化检测结果

    Figure  5.  Change detection results

    图  6  不同方法得到的变化检测结果

    Figure  6.  Change detection results with different methods

    图  7  受损情况分析

    Figure  7.  Analysis results of damaged conditions

    表  1  几种变化检测方法精度对比

    Table  1.   Accuracy comparison of several change detection methods

    方法 检测率(%) 虚警率(%) 总误差率(%) Kappa系数
    基于CNN的方法 93.93 6.09 9.69 0.91
    Log-ratio方法 93.68 36.62 29.29 0.90
    PCA方法 86.62 10.92 20.11 0.84
    MRF方法 88.36 14.65 20.06 0.85
    下载: 导出CSV
  • [1] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005.
    [2] Wikipedia. 2011 Tohoku earthquake and tsunami[OL]. http://en.wikipedia.org/wiki/2011_Tohoku_earthquake_ and_tsunami.
    [3] Chini M, Pacifici F, Emery W, et al. Comparing statistical and neural network methods applied to very high resolution satellite images showing changes in man-made structures at rocky flats[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1812–1821. DOI: 10.1109/TGRS.2008.916223.
    [4] Liao P S, Chen T S, and Chung P C. A fast algorithm for multilevel thresholding[J]. Journal of Information Science and Engineering, 2001, 17(5): 713–727.
    [5] Bovolo F and Bruzzone L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2963–2972. DOI: 10.1109/TGRS.2005.857987.
    [6] Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772–776. DOI: 10.1109/LGRS.2009.2025059.
    [7] 杨祥立, 徐德伟, 黄平平, 等. 融合相干/非相干信息的高分辨率SAR图像变化检测[J]. 雷达学报, 2015, 4(5): 582–590. doi: 10.12000/JR15073

    Yang Xiang-li, Xu De-wei, Huang Ping-ping, et al. Change detection of high resolution SAR images by the fusion of coherent/incoherent information[J]. Journal of Radars, 2015, 4(5): 582–590. DOI: 10.12000/JR15073.
    [8] Wu Ke, Zhong Yan-fei, Wang Xian-min, et al. A novel approach to subpixel land-cover change detection based on a supervised back-propagation neural network for remotely sensed images with different resolutions[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1750–1754. DOI: 10.1109/LGRS.2017.2733558.
    [9] Feng Wen-qing, Sui Hai-gang, and Tu Ji-hui. Object-oriented change detection for remote sensing images based on multi-scale fusion[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016: 483–491. DOI: 10.5194/isprs-archives-XLI-B7-483-2016.
    [10] Yu Wen-juan, Zhou Wei-qi, Qian Yu-guo, et al. A new approach for land cover classification and change analysis: Integrating backdating and an object-based method[J]. Remote Sensing of Environment, 2016, 177: 37–47. DOI: 10.1016/j.rse.2016.02.030.
    [11] Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 2–16. DOI: 10.1016/j.isprsjprs.2009.06.004.
    [12] Wu Chen, Du Bo, Cui Xiao-hui, et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment, 2017, 199: 241–255. DOI: 10.1016/j.rse.2017.07.009.
    [13] 田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037

    Tian Zhuang-zhuang, Zhan Rong-hui, Hu Jie-min, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. DOI: 10.12000/JR16037.
    [14] Wei X, Huang P P, Wang R, et al. Processing of multichannel sliding spotlight and TOPS synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4417–4429. DOI: 10.1109/TGRS.2013.2265306.
    [15] Simonyan K and Zisserman A. Very deep convolutional networks for large-scale image recognition[R]. International Conference on Learning Representations (ICLR), San Diego, CA, America, May, 2015.
    [16] 杜康宁, 邓云凯, 王宇, 等. 基于多层神经网络的中分辨SAR图像时间序列建筑区域提取[J]. 雷达学报, 2016, 5(4): 410–418. doi: 10.12000/JR16060

    Du Kangning, Deng Yunkai, Wang Yu, et al. Medium resolution SAR image time-series built-up area extraction based on multilayer neural network[J]. Journal of Radars, 2016, 5(4): 410–418. DOI: 10.12000/JR16060.
    [17] Sezgin, M and Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146–165. DOI: 10.1117/1.1631315.
    [18] Glorot X, Bordes A, and Bengio Y. Deep sparse rectifier neural networks[C]. 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
    [19] Ioffe S and Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [20] Kingma D P and Ba J. Adam: A method for stochastic optimization[C]. 3rd International Conference for Learning Representations, San Diego, arXiv: 1412.6980, 2015.
    [21] Goodfellow I, Bengio Y, and Courville A. Deep Learning[OL]. 2016. http://www.deeplearningbook.org/.
    [22] ©ZKI/DLR. 2011. Earthquake and Tsunami in Japan[OL]. http://www.zki.dlr.de/article/1893.
    [23] Okajima Y, Yoshikawa K, and Shibayama T. Recent experiences utilizing TerraSAR-X for the monitoring of natural disasters in different parts of the world[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, July, 2011: 4296–4299. DOI: 10.1109/IGARSS.2011.6050181.
    [24] Dumitru C O, Cui S Y, Faur D, et al. Data analytics for rapid mapping: Case study of a flooding event in Germany and the tsunami in Japan using very high resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 114–129. DOI: 10.1109/JSTARS.2014.2320777.
    [25] Bruzzone L and Prieto D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1171–1182. DOI: 10.1109/36.843009.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4942
  • HTML全文浏览量:  1273
  • PDF下载量:  1374
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2017-10-18
  • 网络出版日期:  2017-10-28

目录

    /

    返回文章
    返回