机载同时同频MIMO-SAR系统研究概述

王杰 丁赤飚 梁兴东 陈龙永 祁志美

王杰, 丁赤飚, 梁兴东, 陈龙永, 祁志美. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220-234. doi: 10.12000/JR17046
引用本文: 王杰, 丁赤飚, 梁兴东, 陈龙永, 祁志美. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220-234. doi: 10.12000/JR17046
Wang Jie, Ding Chibiao, Liang Xingdong, Chen Longyong, Qi Zhimei. Research Outline of Airborne MIMO-SAR System with Same Time-frequency Coverage[J]. Journal of Radars, 2018, 7(2): 220-234. doi: 10.12000/JR17046
Citation: Wang Jie, Ding Chibiao, Liang Xingdong, Chen Longyong, Qi Zhimei. Research Outline of Airborne MIMO-SAR System with Same Time-frequency Coverage[J]. Journal of Radars, 2018, 7(2): 220-234. doi: 10.12000/JR17046

机载同时同频MIMO-SAR系统研究概述

DOI: 10.12000/JR17046
基金项目: 国家863计划项目(2013AA122201)
详细信息
    作者简介:

    王 杰(1986–),男,博士,现为中国科学院电子学研究所传感技术联合国家重点实验室博士后,主要从事多输入多输出合成孔径雷达、多维统一信号、雷达通信一体化等领域的研究工作。E-mail: wangjie110_ucas@sina.com

    丁赤飚(1969–),男,研究员,博士生导师,现任中国科学院电子学研究所副所长,主要从事合成孔径雷达、遥感信息处理和应用系统等领域的研究工作,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设项目,曾获国家科技进步一等奖、二等奖各一项。E-mail: cbding@mail.ie.ac.cn

    梁兴东(1973–),男,研究员,博士生导师,现任中国科学院电子学研究所微波成像技术重点实验室常务主任,主要从事高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、成像处理及应用和实时数字信号处理等领域的研究工作。E-mail: xdliang@mail.ie.ac.cn

    陈龙永(1979–),男,研究员,硕士生导师,现任中国科学院电子学研究所微波成像技术重点实验室常务副主任,主要从事高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、微波成像新概念、新体制和新技术等领域的研究工作。E-mail: lychen@mail.ie.ac.cn

    祁志美(1967–),男,研究员,博士生导师,现任中国科学院电子学研究所传感技术联合国家重点实验室常务副主任,主要从事纳米光电功能材料、光MEMS技术、集成光波导传感器与系统、表界面光谱分析技术与仪器等领域的研究工作。E-mail: zhimei-qi@mail.ie.ac.cn

    通讯作者:

    梁兴东   xdliang@mail.ie.ac.cn

Research Outline of Airborne MIMO-SAR System with Same Time-frequency Coverage

Funds: The National 863 Program of China (2013AA122201)
  • 摘要: 针对传统合成孔径雷达(SAR)体制带来的模式单一、核心指标已接近极限等瓶颈问题,近年来提出了一种新体制多输入多输出合成孔径雷达(MIMO-SAR)。该雷达系统通过更多的收发阵元获得更为丰富的系统自由度,并以此突破传统SAR体制限制,实现高分辨率宽测绘带跨越发展和多模式协同。该文深度剖析了MIMO-SAR概念内涵与技术特点,概括了国内外研究现状与技术发展趋势,总结归纳了国际首部同时同频MIMO-SAR研制经验与飞行试验结果,并展望分析了MIMO SAR应用前景,以期为我国未来SAR技术奠定基础。

     

  • 图  1  MIMO-SAR分类示意图

    Figure  1.  Diagrammatic sketch of MIMO-SAR

    图  2  空时编码MIMO-SAR示意图[30]

    Figure  2.  Diagrammatic sketch of space-time coding MIMO-SAR[30]

    图  3  MIMO-SAR多维波形编码示意图[10]

    Figure  3.  Diagrammatic sketch of multidimensional waveform coding MIMO-SAR[10]

    图  4  基于DBF的多维波形解码成像示意图[5]

    Figure  4.  Diagrammatic sketch of multidimensional waveform decoding MIMO-SAR using DBF[5]

    图  5  弱化正交准则对SAR成像能力的影响示意图

    Figure  5.  Diagrammatic sketch of weakened orthogonality criterion impact on SAR imaging

    图  6  多维正交波形概念示意图[5]

    Figure  6.  Diagrammatic sketch of multidimensional orthogonal waveform[5]

    图  7  线性调频信号与OFDM信号成像结果比较图

    Figure  7.  Comparison between chirp and OFDM imaging results

    图  8  OFDM Chirp信号改进前后的频谱比较图

    Figure  8.  Comparison between the original and improved OFDM Chirp spectrum

    图  9  并行观测通道发射信号的多普勒频谱示意图

    Figure  9.  Diagrammatic sketch of Doppler spectrum simultaneously radiated by two channels

    图  10  MIMO-SAR系统框图

    Figure  10.  MIMO-SAR system topology

    图  11  MIMO-SAR挂载图

    Figure  11.  MIMO-SAR mounted on the plane

    图  12  高分宽幅成像结果

    Figure  12.  Imaging results of high resolution wide swath mode

    图  13  高分宽幅定标点扩展函数

    Figure  13.  Calibrated point spread function of high resolution wide swath mode

    图  15  宽幅模式定标点扩展函数

    Figure  15.  Calibrated point spread function of wide swath mode

    图  16  聚束模式定标点扩展函数

    Figure  16.  Calibrated point spread function of spotlighting mode

    图  14  多模式协同成像结果

    Figure  14.  Imaging results of multimodal operation

    表  1  同时同频MIMO-SAR系统参数

    Table  1.   Parameter of MIMO-SAR system with same time-frequency coverage

    总体参数 载频 5.4 GHz
    天线尺寸 1236 mm×128 mm
    相位中心数目 8个
    作用距离 10~100 km
    功耗 ≤1800 W
    高分宽幅模式 带宽 560 MHz
    时宽 75 μs
    幅宽 ≥30 km
    多模式 宽幅模式 带宽 100 MHz
    时宽 150 μs
    幅宽 50~70 km
    聚束模式 带宽 560 MHz
    时宽 150 μs
    幅宽 距离≥6 km,
    方位≥4 km
    GMTI模式 最小可检测速度 ≤10 km/h
    下载: 导出CSV
  • [1] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10. DOI: 10.3724/SP.J.1300.2012.20015

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10. DOI: 10.3724/SP.J.1300.2012.20015
    [2] Moreira A, Prats-Iraola P, Younis M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. DOI: 10.1109/MGRS.2013.2248301
    [3] Ender J H G. MIMO-SAR[C]. Proceedings of International Radar Symposium, Cologne, Germany, 2007: 580–588.
    [4] 周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. DOI: 10.3724/SP.J.1300.2013.13074

    Zhou Wei, Liu Yong-xiang, Li Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. DOI: 10.3724/SP.J.1300.2013.13074
    [5] Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. DOI: 10.1109/TGRS.2013.2263934
    [6] Cristallini D, Pastina D, and Lombardo P. Exploiting MIMO SAR potentialities with efficient cross-track constellation configurations for improved range resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 38–52. DOI: 10.1109/TGRS.2010.2053715
    [7] Zhuge Xiao-dong and Yarovoy A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. DOI: 10.1109/TGRS.2010.2053038
    [8] Wang Jie, Chen Long-yong, Liang Xing-dong, et al. Multi-input multi-output frequency-modulated continuous wave synthetic aperture radar system using beat-frequency division waveforms[J]. Measurement Science&Technology, 2013, 24(7): 074016.
    [9] Krieger G, Younis M, Huber S, et al.. MIMO-SAR and the orthogonality confusion[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012: 1533–1536.
    [10] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974
    [11] Meng C Z, Xu J, Xia X G, et al. MIMO-SAR waveform separation based on inter-pulse phase modulation and range-Doppler decouple filtering[J]. Electronics Letters, 2013, 49(6): 420–422. DOI: 10.1049/el.2013.0016
    [12] Wang Jie, Liang Xing-dong, Ding Chi-biao, et al. An improved OFDM chirp waveform used for MIMO SAR system[J]. Science China Information Sciences, 2014, 57(6): 1–9.
    [13] Wang Jie, Liang Xing-dong, Chen Long-yong, et al. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1156–1560.
    [14] Li Jian and Stoica P. MIMO Radar Signal Processing[M]. New York, US: Wiley-IEEE Press, 2009: 2–10.
    [15] Marechal R, Amiot T, Attia S, et al.. Distributed SAR for performance improvement[C]. Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005: 4077–4079.
    [16] Martin M, Klupar P, Kilberg S, et al.. TechSat 21 and revolutionizing space missions using microsatellites[C]. Proceedings of the 15th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 2001.
    [17] Cloude S R and Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. DOI: 10.1109/36.718859
    [18] Papathanassiou K P and Cloude S R. Single-baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352–2363. DOI: 10.1109/36.964971
    [19] Klare J, Weiss M, Peters O, et al.. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, USA, 2006: 3842–3845.
    [20] Klare J, Brenner A R, and Ender J H. A new airborne radar for 3D imaging-image formation using the ARTINO principle[C]. Proceedings of the 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006: 103–107.
    [21] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F,Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [22] 周高杯, 宋红军, 邓云凯. MIMO-SAR中虚拟径相位校正与子带合成方法研究[J]. 电子与信息学报, 2011, 33(2): 484–488. DOI: 10.3724/SP.J.1146.2010.00435

    Zhou Gao-bei, Song Hong-jun, and Deng Yun-kai. Investigation of virtual aperture phase correction and sub band synthesis algorithms in MIMO-SAR[J]. Journal of Electronics&Information Technology, 2011, 33(2): 484–488. DOI: 10.3724/SP.J.1146.2010.00435
    [23] 邓云凯, 陈倩, 祁海明, 等. 一种基于频域子带合成的多发多收高分辨率SAR成像算法[J]. 电子与信息学报, 2011, 33(5): 1082–1087. DOI: 10.3724/SP.J.1146.2010.01067

    Deng Yun-kai, Chen Qian, Qi Hai-ming, et al. A high-resolution imaging algorithm for MIMO SAR based on the sub-band synthesis in frequency domain[J]. Journal of Electronics&Information Technology, 2011, 33(5): 1082–1087. DOI: 10.3724/SP.J.1146.2010.01067
    [24] Ender J H G and Brenner A R. PAMIR—a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar,Sonar and Navigation, 2003, 150(3): 165–172. DOI: 10.1049/ip-rsn:20030445
    [25] Brenner A R and Ender J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings-Radar,Sonar and Navigation, 2006, 153(2): 152–162. DOI: 10.1049/ip-rsn:20050044
    [26] Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 1(2): 41–59.
    [27] Fishler E, Haimovich A, Blu R, et al.. MIMO radar: An idea whose time has come[C]. Proceedings of the IEEE Radar Conference, Philadelphia, PA, 2004: 71–78.
    [28] Robey F C, Coutts S, Weikle D, et al.. MIMO radar theory and experimental results[C]. Proceedings of Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2004: 300–304.
    [29] Fishler E, Haimovich Alex, Blum Rick, et al.. Performance of MIMO radar systems: Advantages of angular diversity[C]. Proceedings of Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2004: 305–309.
    [30] Mittermayer J and Martinez J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4077–4079.
    [31] Kim J, Ossowska A, and Wiesbeck W. Investigation of MIMO SAR for interferometry[C]. Proceedings of European Radar Conference, Munich, Germany, 2007: 51–54.
    [32] 井伟. 关于星载合成孔径雷达距离和方位模糊的研究[D]. [硕士论文], 西安电子科技大学, 2005.

    Jing Wei. Study of range and azimuth ambiguities in synthetic aperture radar[D]. [Master dissertation], Xidian University, 2005.
    [33] Wang Wen-qin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. DOI: 10.1109/MAES.2013.6575407
    [34] Wang Wen-qin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. DOI: 10.1109/TGRS.2011.2116030
    [35] Wang Wen-qin. MIMO-based SAR ground moving target detection approach[C]. Proceedings of 2011 International Conference on Intelligent Computation Technology and Automation, Shenzhen, Guangdong, 2011: 608–611.
    [36] 林月冠. 基于压缩感知的多通道雷达成像技术研究[D]. [博士论文], 中国科学院研究生院, 2012.

    Lin Yue-guan. Research on multi channel radar imaging technology based on compressed sensing[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2012.
    [37] 武其松, 井伟, 邢孟道, 等. 多维波形编码信号大测绘带成像[J]. 西安电子科技大学学报(自然科学版), 2009, 36(5): 801–806

    Wu Qi-song, Jing Wei, Xing Meng-dao, et al. Wide swath imaging with multidimensional waveform encoding[J]. Journal of Xidian University(Natural Science), 2009, 36(5): 801–806
    [38] Zou Bo, Dong Zhen, and Liang Diannong. Design and performance analysis of orthogonal coding signal in MIMO-SAR[J]. Science China Information Sciences, 2011, 54(8): 1723–1737. DOI: 10.1007/s11432-011-4284-x
    [39] 粟毅, 朱宇涛, 郁文贤, 等. 多通道雷达天线阵列的设计理论与算法[J]. 中国科学: 信息科学, 2010, 53(7): 1470–1480

    Su Yi, Zhu Yu-tao, Yu Wen-xian, et al. Multi-channel radar array design method and algorithm[J]. Science China Information Sciences, 2010, 53(7): 1470–1480
    [40] Wang Li-bao, Xu Jia, Peng Shi-bao, et al. Optimal linear array configuration and DOF tradeoff for MIMO-SAR[J]. Chinese Journal of Electronics, 2011, 20(2): 380–384.
    [41] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
    [42] Woodward P M. Radar ambiguity analysis[R]. Technical Report RRE, Technical Note 731, Malvern, Worcs: Oyal Radar Estab-Lishment Ministry of Technology, 1967.
    [43] Wang Jie, Liang Xing-dong, Ding Chi-biao, et al. A novel scheme for ambiguous energy suppression in MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 344–348. DOI: 10.1109/LGRS.2014.2340898
    [44] 孟藏珍, 许稼, 王力宝, 等. 基于Clean处理的MIMO-SAR正交波形分离[J]. 电子与信息学报, 2013, 35(12): 2809–2814. DOI: 10.3724/SP.J.1146.2013.00311

    Meng Cang-zhen, Xu Jia, Wang Li-bao, et al. An orthogonal waveform separation method based on clean processing in MIMO-SAR[J]. Journal of Electronics&Information Technology, 2013, 35(12): 2809–2814. DOI: 10.3724/SP.J.1146.2013.00311
    [45] He Hao, Stoica P, and Li Jian. Designing unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. DOI: 10.1109/TSP.2009.2025108
    [46] Garmatyuk D and Brenneman M. Adaptive multicarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780–3790. DOI: 10.1109/TGRS.2011.2165546
    [47] Garmatyuk D. Cross-range SAR reconstruction with multicarrier OFDM signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 808–812. DOI: 10.1109/LGRS.2011.2182176
    [48] Kim J H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. DOI: 10.1109/LGRS.2012.2213577
    [49] Wang Jie, Chen Long-yong, Liang Xing-dong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. DOI: 10.1109/TGRS.2015.2419271
    [50] Reigber A, Jäger M, Fischer J, et al.. System status and calibration of the F-SAR airborne SAR instrument[C]. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 1520–1523.
    [51] Klare J. Digital beamforming for a 3D MIMO SAR-improvements through frequency and waveform diversity[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008: 17–20.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  4021
  • HTML全文浏览量:  1135
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-06-02
  • 网络出版日期:  2018-04-28

目录

    /

    返回文章
    返回