原始数据压缩对方位向多通道SAR系统影响研究

赵耀 邓云凯 王宇 李宁 王伟

赵耀, 邓云凯, 王宇, 李宁, 王伟. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397-407. doi: 10.12000/JR17030
引用本文: 赵耀, 邓云凯, 王宇, 李宁, 王伟. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397-407. doi: 10.12000/JR17030
Zhao Yao, Deng Yunkai, Wang Yu, Li Ning, Wang Wei. Study of Effect of Raw Data Compression on Azimuth Multi-channel SAR System[J]. Journal of Radars, 2017, 6(4): 397-407. doi: 10.12000/JR17030
Citation: Zhao Yao, Deng Yunkai, Wang Yu, Li Ning, Wang Wei. Study of Effect of Raw Data Compression on Azimuth Multi-channel SAR System[J]. Journal of Radars, 2017, 6(4): 397-407. doi: 10.12000/JR17030

原始数据压缩对方位向多通道SAR系统影响研究

DOI: 10.12000/JR17030
基金项目: 国家自然科学基金优秀青年基金(61422113),国家万人计划-青年拔尖人才,中科院百人计划
详细信息
    作者简介:

    赵耀:赵   耀(1993–),男,河南人,中国科学院电子学研究所通信与信息系统专业硕士研究生,研究方向为星载数据压缩技术。E-mail: zhaoyaohust@163.com

    邓云凯(1962–),男,湖北人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为星载合成孔径雷达系统设计。E-mail: ykdeng@mail.ie.ac.cn

    王宇:王   宇(1980–),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail: yuwang@mail.ie.ac.cn

    李宁:李   宁(1987–),男,安徽人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为多模式合成孔径雷达成像及其应用技术。E-mail: lining_nuaa@163.com

    王伟:王   伟(1985–),男,河北人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为新体制星载SAR系统设计和信号处理。E-mail: ww_nudt@sina.com

    通讯作者:

    李宁   lining_nuaa@163.com

Study of Effect of Raw Data Compression on Azimuth Multi-channel SAR System

Funds: The National Natural Science Foundation of China (61422113), The National Ten Thousand Talent Program-Young Top Notch Talent Program, The Hundred Talents Program of the Chinese Academy of Sciences
  • 摘要: 方位向多通道是实现星载SAR高分辨率宽测绘带成像的重要技术手段,随着分辨率和幅宽的提升,SAR系统的回波数据量也会急剧增加。然而星上存储空间和数传带宽有限,通常采用数据压缩技术降低回波的数据量。为研究数据压缩对方位向多通道SAR系统的影响,该文建立了多通道数据压缩的信号模型,推导并分析了数据压缩对多通道信噪比尺度因子和量化噪声的影响,最后通过仿真和实测数据验证了该文提出的模型与分析结果的正确性,并讨论了数据压缩对多通道虚假目标强度比的影响。该文的研究结果可为多通道SAR系统的原始数据压缩方式选择提供依据。

     

  • 图  1  方位向多通道SAR系统

    Figure  1.  Azimuth multi-channel SAR system

    图  2  加入系统热噪声的信号模型

    Figure  2.  Signal model with thermal noise

    图  3  不加系统热噪声的多通道信号模型

    Figure  3.  Signal model without thermal noise

    图  4  仿真实验流程图

    Figure  4.  Flowchart of simulation experiments

    图  5  加入不同热噪声的信噪比尺度因子随量化比特数的变化曲线

    Figure  5.  SNR scaling factor of adding different thermal noise over quantization bits

    图  6  不同非均匀因子的数据域量化信噪比随量化比特数的变化曲线

    Figure  6.  Signal to quantization noise ratio of different non-uniform factors over quantization bits in data domain

    图  7  不同非均匀因子的虚假目标强度比随量化比特数的变化曲线

    Figure  7.  Peek-to-ghost-ratio of different non-uniform factors over quantization bits

    图  8  实测实验流程图

    Figure  8.  Flowchart of real data experiments

    图  9  原始数据重构后的聚焦图像

    Figure  9.  Focused images for reconstructed raw data

    图  10  数据域量化信噪比随量化比特数的变化曲线

    Figure  10.  The signal to Quantization Noise Ratio over quantization bits in data domain

    图  11  数据域平均相位误差随量化比特数的变化曲线

    Figure  11.  Mean phase error over quantization bits in data domain

    图  12  图像域量化信噪比随量化比特数的变化曲线

    Figure  12.  Signal to quantization noise ratio over quantization bits in image domain

    图  13  图像域平均相位误差随量化比特数的变化曲线

    Figure  13.  Mean phase error over quantization bits in image domain

    表  1  多通道SAR系统的主要仿真参数

    Table  1.   Main simulation parameters of multi-channel SAR system

    参数 数值
    载频(GHz) 9.65
    非均匀因子 0~0.7
    速度(m/s) 7609.4
    接收天线长度(Rx) (m) 4.78
    子孔径数 2
    发射天线长度(Tx) (m) 2.39
    下载: 导出CSV

    表  2  多通道SAR系统的主要系统参数

    Table  2.   Main parameters of multi-channel SAR system

    参数 数值
    载频(GHz) 5.4
    PRF(Hz) 1800
    速度(m/s) 137.7
    接收天线长度(Rx) (m) 0.624
    子孔径数 4
    发射天线长度(Tx) (m) 0.156
    下载: 导出CSV
  • [1] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005.
    [2] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10
    [3] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [4] Currie A. Wide-swath SAR imaging with multiple azimuth beams[C]. Proceedings of IEE Colloquium on Synthetic Aperture Radar, London, UK, 1989: 3/1–3/4.
    [5] Currie A and Hall C D. A synthetic aperture radar technique for the simultaneous provision of high-resolution wide-swath coverage[C]. Proceedings 1990 Military Microwaves Conference, 1990: 539–544.
    [6] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [7] Kim J H, Younis M, Prats-Iraola P, et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579–590. DOI: 10.1109/TGRS.2012.2201947
    [8] Kwok R and Johnson W T K. Block adaptive quantization of Magellan SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(4): 375–383. DOI: 10.1109/36.29557
    [9] Max J. Quantizing for minimum distortion[J]. IRE Transactions on Information Theory, 1960, 6(1): 7–12. DOI: 10.1109/TIT.1960.1057548
    [10] McLeod I H and Cumming I G. On-board encoding of the ENVISAT wave mode data[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Firenze, Italy, 1995, 3: 1681–1683.
    [11] Martone M, Bräutigam B, and Krieger G. Quantization effects in TanDEM-X data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 583–597. DOI: 10.1109/TGRS.2014.2325976
    [12] Pavia P, Spera G, Venturini R, et al.. CSG satellite design and performance[C]. Proceedings of the 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1023–1026.
    [13] McLeod I H, Cumming I G, and Seymour M S. ENVISAT ASAR data reduction: Impact on SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 589–602. DOI: 10.1109/36.662741
    [14] Benz U, Strodl K, and Moreira A. A comparison of several algorithms for SAR raw data compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1266–1276. DOI: 10.1109/36.469491
    [15] 谭洪, 仇晓兰, 洪峻. 原始数据压缩对全极化SAR极化信息的影响[J]. 系统工程与电子技术, 2015, 37(9): 2029–2034 doi: 10.3969/j.issn.1001-506X.2015.09.12

    Tan Hong, Qiu Xiao-lan, and Hong Jun. Effect of raw data compression on polarimetric information of quad polarimetric SAR[J]. Systems Engineering and Electronics, 2015, 37(9): 2029–2034. DOI: 10.3969/j.issn.1001-506X.2015.09.12
    [16] 行坤, 邓云凯, 祁海明. 原始数据压缩对星载SAR/GMTI系统测速影响研究[J]. 电子与信息学报, 2010, 32(6): 1321–1326

    Xing Kun, Deng Yun-kai, and Qi Hai-ming. Study of effect of raw data compression on space-borne SAR/GMTI velocity measurement[J]. Journal of Electronics&Information Technology, 2010, 32(6): 1321–1326
    [17] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
    [18] Jing Wei, Xing Meng-dao, Qiu Cheng-wei, et al. Unambiguous reconstruction and high-resolution imaging for multiple-channel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102–106. DOI: 10.1109/LGRS.2008.2008825
    [19] Lin Y P and Vaidyanathan P P. Periodically nonuniform sampling of bandpass signals[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 1998, 45(3): 340–351. DOI: 10.1109/82.664240
    [20] Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(3): 649–652. DOI: 10.1109/19.585419
    [21] 仇晓兰, 雷斌, 葛蕴萍, 等. SAR原始数据两种量化压缩方式的性能评估[J]. 电子与信息学报, 2010, 32(9): 2268–2272

    Qiu Xiao-lan, Lei Bin, Ge Yun-ping, et al. Performance evaluation of two compression methods for SAR raw data[J]. Journal of Electronics&Information Technology, 2010, 32(9): 2268–2272
    [22] Algra T. Data compression for operational SAR missions using entropy-constrained block adaptive quantisation[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002, 2: 1135–1139.
    [23] 郜参观, 邓云凯, 冯锦, 等. 非均匀采样对偏置相位中心多波束SAR性能影响的分析[J]. 电子与信息学报, 2012, 34(6): 1305–1310

    Gao Can-guan, Deng Yun-kai, Feng Jin, et al. Analysis on the non-uniform sampling of displaced phase center multiple-beam SAR systems[J]. Journal of Electronics&Information Technology, 2012, 34(6): 1305–1310
    [24] 李信, 祁海明, 华斌, 等. 星载SAR原始数据压缩引起的目标辐射误差机理研究[J]. 电子与信息学报, 2011, 33(8): 1845–1850

    Li Xin, Qi Hai-ming, Hua Bin, et al. Theoretical analysis on target radiometric error resulting from spaceborne SAR raw data compression[J]. Journal of Electronics&Information Technology, 2011, 33(8): 1845–1850
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2736
  • HTML全文浏览量:  659
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-05-12
  • 网络出版日期:  2017-08-28

目录

    /

    返回文章
    返回