一种改进的变化检测方法及其在洪水监测中的应用

冷英 李宁

冷英, 李宁. 一种改进的变化检测方法及其在洪水监测中的应用[J]. 雷达学报, 2017, 6(2): 204-212. doi: 10.12000/JR16139
引用本文: 冷英, 李宁. 一种改进的变化检测方法及其在洪水监测中的应用[J]. 雷达学报, 2017, 6(2): 204-212. doi: 10.12000/JR16139
Leng Ying, Li Ning. Improved Change Detection Method for Flood Monitoring[J]. Journal of Radars, 2017, 6(2): 204-212. doi: 10.12000/JR16139
Citation: Leng Ying, Li Ning. Improved Change Detection Method for Flood Monitoring[J]. Journal of Radars, 2017, 6(2): 204-212. doi: 10.12000/JR16139

一种改进的变化检测方法及其在洪水监测中的应用

DOI: 10.12000/JR16139
基金项目: 国家自然科学基金优秀青年基金(61422113)
详细信息
    作者简介:

    冷 英(1987–),女,辽宁人,博士研究生,研究方向为SAR图像信息提取。E-mail: sarallyy@126.com

    李 宁(1987–),男,安徽人,博士,中科院电子学研究所助理研究员,研究方向为多模式合成孔径雷达成像及其应用技术研究。E-mail: lining_nuaa@163.com

    通讯作者:

    李宁   lining_nuaa@163.com

  • 中图分类号: TP753

Improved Change Detection Method for Flood Monitoring

Funds: The National Natural Science Foundation for Excellent Young Scholars (61422113)
  • 摘要: 针对多时相合成孔径雷达(Synthetic Aperture Radar, SAR)图像的变化检测,该文提出一种改进的混合变化检测方法来提高检测精度。该方法首先采用基于像素级的变化检测方法提取初始变化区域,并以此估计初始聚类中心;然后采用模糊聚类(FCM)将变化前后SAR图像分为3类,即水体区域、背景区域、过渡区域;接着采用最近距离聚类(NNC)将过渡区域像素进一步划分为水体和背景两部分,合并所有水体像素,实现洪水区域的提取。最后得到的洪水区域差异图即为最终的变化检测结果。该文采用Sentinel-1A获取的淮河与鄱阳湖水域数据进行算法验证,实验表明,该文方法的检测率较高,且总体误差较低。

     

  • 图  1  算法流程

    Figure  1.  Workflow of the proposed algorithm

    图  2  实验场景1:淮河流域

    Figure  2.  Experimental scene 1 covering Huaihe areas acquired through Sentinel-1A

    图  3  实验场景2:鄱阳湖水域

    Figure  3.  Experimental scene 2 covering Poyang Lake areas acquired through Sentinel-1A

    图  4  待分析的图像切片

    Figure  4.  Slice under analysis

    图  5  PCA融合对比分析

    Figure  5.  Image fusion with PCA analysis

    图  6  PBCD变化检测分析

    Figure  6.  Analysis of PBCD approach

    图  7  A区域变化检测结果对比分析

    Figure  7.  Change detection of A region with different approaches

    图  8  B区域变化检测结果对比分析

    Figure  8.  Change detection of B region with different approaches

    表  1  Sentinel-1A数据参数(干涉宽测绘带模式)

    Table  1.   Parameters of Sentinel-1A product (IW)

    参数 数值
    成像波段 C
    载频 5.4 GHZ
    幅宽 250 km
    入射角 38.9°
    极化 VV HV
    地距分辨率 20×22 m
    下载: 导出CSV

    表  2  变化检测精度对比分析

    Table  2.   Quantitative evalutaions and comparison of change detection results

    方法 检测率(%) 虚警率(%) 总误差率(%) Kappa
    A B A B A B A B
    本文方法 97.60 87.32 1.93 2.71 2.08 3.83 0.96 0.86
    文献[8]方法 94.34 79.40 1.00 3.97 2.44 5.84 0.92 0.76
    文献[21]方法 93.40 73.77 0.65 1.33 2.53 4.14 0.91 0.71
    Try and error 93.33 69.15 0.53 1.12 2.47 4.47 0.90 0.70
    FCM 95.84 86.26 2.36 3.17 2.93 4.37 0.94 0.84
    下载: 导出CSV
  • [1] Wang Y, Du L, and Dai H. Unsupervised SAR image change detection based on SIFT keypoints and region information[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 931–935. DOI: 10.1109/LGRS.2016.2554606.
    [2] Addabbo A D, Refice A, Pasquariello G, et al. A Bayesian network for flood detection combining SAR imagery and ancillary data[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3612–3625. DOI: 10.1109/TGRS.2016.2520487.
    [3] Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80(2): 91–106. DOI: 10.1016/ j.isprsjprs.2013.03.006.
    [4] Chen G, Hay G, Carvalho L M T, et al. Object-based change detection[J].International Journal of Remote Sensing, 2012, 33(14): 4434–4457. DOI: 10.1080/01431161.2011.648285.
    [5] Ghofrani Z, Mokhtarzade M, Sahebi M R, et al. Evaluating coverage changes in national parks using a hybrid change detection algorithm and remote sensing[J].Journal of Applied Remote Sensing, 2014, 8(1): 1–16. DOI: 10.1117/1.JRS.8.083646.
    [6] Huo C, Zhou Z, Lu H, et al. Fast object-level change detection for VHR images[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 118–122. DOI: 10.1109/LGRS.2009.2028438.
    [7] Hachicha S and Chaabane F. Comparison of change detection indicators in SAR images[C]. European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 109–112.
    [8] Lu J, Li J, Chen G, et al. Improving pixel-based change detection accuracy using an object-based approach in multitemporal SAR flood images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3486–3496. DOI: 10.1109/JSTARS.2015.2416635.
    [9] Pulvirenti L, Chini M, Pierdicca N, et al. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation[J].Remote Sensing of Environment, 2011, 115(1): 990–1002. DOI: 10.1016/j.rse.2010.12.002.
    [10] Avendano J, Mora S F, Vera J E, et al. Flood monitoring and change detection based on unsupervised image segmentation and fusion in multitemporal SAR imagery[C]. International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico, 2015: 1–6. DOI: 10.1109/ICEEE.2015.7357982.
    [11] Xiong B, Chen J M, and Kuang G. A change detection measure based on a likelihood ratio and the statistical properties of SAR intensity images[J].Remote Sensing Letters, 2012, 3(3): 267–275. DOI: 10.1080/01431161.2011.572093.
    [12] Lu J, Giustarini L, Xiong B, et al. Automated flood detection with improved robustness and efficiency using multi-temporal SAR data[J].Remote Sensing Letters, 2014, 5(3): 240–248. DOI: 10.1080/2150704X.2014.898190.
    [13] Schmitt M and Stilla U. Adaptive multilooking of airborne single-pass multi-baseline InSAR stacks[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 51(1): 305–312. DOI: 10.1109/TGRS.2013.2238947.
    [14] 浮瑶瑶, 柳彬, 张增辉, 等. 基于词包模型的高分辨SAR图像变化检测与分析[J]. 雷达学报, 2014, 3(1): 101–110. DOI: 10.3724/SP.J.1300.2014.13134.

    Fu Yaoyao, Liu Bin, Zhang Zenghui, et al. Change detection and analysis of high resolution synthetic aperture radar images based on bag-of-words model[J].Journal of Radars, 2014, 3(1): 101–110. DOI: 10.3724/SP.J.1300.2014.13134.
    [15] Celik T and Ma K K. Multitemporal image change detection using undecimated discrete wavelet transform and active contours[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 706–716. DOI: 10.1109/TGRS.2010.2066979.
    [16] Salehi S, Valadan Z, and Mohammad J. Unsupervised change detection based on improved Markov random field technique using multichannel synthetic aperture radar images[J].Journal of Applied Remote Sensing, 2014, 8(1): 5230–5237. DOI: 10.1117/1.JRS.8.083591.
    [17] 安成锦, 牛照东, 李志军, 等. 典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J]. 电子与信息学报, 2010, 32(9): 2215–2219. DOI: 10.3724/SP.J.1146.2009.01426.

    An Chengjin, Niu Zhaodong, Li Zhijun, et al. Otsu threshold comparison and SAR water segmentation result analysis[J].Journal of Electronics&Information Technology, 2010, 32(9): 2215–2219. DOI: 10.3724/SP.J.1146.2009.01426.
    [18] Liu Z L, Li N, WANG R, et al. A novel region-merging approach for coastline extraction from Sentinel-1A IW mode SAR imagery[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 324–328. DOI: 10.1109/LGRS.2015.2510745.
    [19] Sheng G F, Yang W, Deng X P, et al. Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model[J].IEEE Journal of Oceanic Engineering, 2012, 37(3): 375–383. DOI: 10.1109/JOE.2012.2191998.
    [20] 张慧哲, 王坚. 基于初始聚类中心选取的改进FCM聚类算法[J]. 计算机科学, 2009, 36(6): 206–209. DOI: 10.3969/j.issn.1002–137X.2009.06.055.

    Zhang Huizhe and Wang Jian. Improved fuzzy C means clustering algorithm based on selecting initial clustering centers[J].Computer Science, 2009, 36(6): 206–209. DOI: 10.3969/j.issn.1002–137X.2009.06.055.
    [21] Li H C, Celik T, Longbotham N, et al. Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2458–2462. DOI: 10.1109/LGRS.2015.2484220.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  3096
  • HTML全文浏览量:  718
  • PDF下载量:  964
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-05
  • 修回日期:  2017-02-16
  • 网络出版日期:  2017-04-28

目录

    /

    返回文章
    返回