多普勒盲区下基于GM-PHD的雷达多目标跟踪算法

尉强 刘忠

尉强, 刘忠. 多普勒盲区下基于GM-PHD的雷达多目标跟踪算法[J]. 雷达学报, 2017, 6(1): 34-42. doi: 10.12000/JR16125
引用本文: 尉强, 刘忠. 多普勒盲区下基于GM-PHD的雷达多目标跟踪算法[J]. 雷达学报, 2017, 6(1): 34-42. doi: 10.12000/JR16125
Wei Qiang, Liu Zhong. A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone[J]. Journal of Radars, 2017, 6(1): 34-42. doi: 10.12000/JR16125
Citation: Wei Qiang, Liu Zhong. A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone[J]. Journal of Radars, 2017, 6(1): 34-42. doi: 10.12000/JR16125

多普勒盲区下基于GM-PHD的雷达多目标跟踪算法

DOI: 10.12000/JR16125
基金项目: 国家部委基金
详细信息
    作者简介:

    尉 强(1982–),男,山西襄汾人,博士研究生,主要研究方向为指挥自动化。E-mail: yangqihong0354@163.com

    刘忠:刘   忠(1962–),男,山东龙口人,教授, 博士生导师,研究方向为指挥自动化。E-mail: 554745138@qq.com

    通讯作者:

    尉强   yangqihong0354@163.com

  • 中图分类号: TP393.08

A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone

Funds: The National Ministries Foundation
  • 摘要: 在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信息,并将该检测概率模型应用于传统GM-PHD更新方程中,推导出多普勒盲区下的GM-PHD更新方程。蒙特卡罗仿真实验结果表明:与只有多普勒量测信息的传统GM-PHD算法相比,新算法在较小的MDV条件下能够明显提高雷达对运动目标的跟踪性能。

     

  • 图  1  传感器/目标几何杂波率为12.6×10–6时杂波分布

    Figure  1.  Sensor/target clutter distribution when the geometric clutter rate is 12.6×10–6

    图  2  两目标的多普勒与不同的MDVs的时间关系

    Figure  2.  The relationship of two goals Doppler with diffierent MDVs

    图  3  真实航迹与不同算法的估计(MDV=1)

    Figure  3.  Real track and estimation of different algorithms (MDV=1)

    图  4  不同滤波器跟踪性能比较(MDV=1)

    Figure  4.  Comparison of tracking performance of different fliters (MDV=1)

    图  5  不同滤波器跟踪性能比较(MDV=3)

    Figure  5.  Comparison of tracking performance of different fliters (MDV=3)

    图  6  滤波器的绝对时间和相对时间性能比较

    Figure  6.  The comparison of absolute time and relative time performance of filters

  • [1] Ronald P S Mahler. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: ARTECH HOUSE, 2007: 45–49. http://www.sfbtr8.spatial-cognition.de/aigaion/index.php/language/set/en/publications/show/1791
    [2] 范红旗, 卢大威, 刘本源. 多源多目标统计信息融合[M]. 北京: 国防工业出版社, 2013: 12–16.

    Fan Hong-qi, Lu Da-wei, and Liu Ben-yuan. Statistical Multisource-Multitarget Information Fusion[M]. Beijing: National Defense Industry Press, 2013: 12–16.
    [3] Ouyang C, Ji H-B, and Tian Y. Improved Gaussian mixture CPHD tracker for multitarget tracking[J].IEEE Transactions on Signal Processing, 2013, 49(2): 1177–1191. https://www.researchgate.net/publication/258792204_Improved_Gaussian_Mixture_CPHD_Tracker_for_Multitarget_Tracking
    [4] Beard M, Vo B-T, Vo B-N,et al.. A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2835–2844. doi: 10.1109/TAES.2013.6621859
    [5] Beard M, Vo B-T, and Vo B-N. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J].IEEE Signal Processing Letters, 2013, 20(4): 323–326. doi: 10.1109/LSP.2013.2244594
    [6] Ristic B, Clark D, and Gordon N. Calibration of multi-target tracking algorithms using non-cooperative targets[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 390–398. https://pureapps2.hw.ac.uk/portal/en/publications/calibration-of-multitarget-tracking-algorithms-using-noncooperative-targets(86c7223f-af58-4a65-9da4-08f325180a22)/export.html
    [7] Battistelli G, Chisci L, Fantacci C,et al.. Consensus CPHD filter for distributed multitarget tracking[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508–520. doi: 10.1109/JSTSP.2013.2250911
    [8] Uney M, Clark D, and Julier S. Distributed fusion of PHD filters via exponential mixture densities[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162
    [9] Vo Ba-Tuong, Vo Ba-Ngu, and Cantoni Antonio. The cardinality balanced multi-target multi-bernoulli filter and its implementations[J].IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [10] Vo B-N, Singh S, and Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [11] Kohlleppel R. Ground moving target tracking of PAMIR detections with a Gaussian mixture-PHD filter[C]. 2011 12th International Radar Symposium, Leipzig, 2011: 193–198. http://ieeexplore.ieee.org/document/6042117/
    [12] Kohlleppel R. Ground target tracking with signal adaptive measurement error covariance matrix[C]. 15th IEEE International Conference on Information Fusion, Singapore, 2012: 550–557. http://publica.fraunhofer.de/dokumente/N-249700.html
    [13] Mallick M, Krishnamurthy V, and Vo B-N. Integrated Tracking, Classification, and Sensor Management[M]. John Wiley & Sons Inc., 2013: 21–23. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2524472
    [14] Koch W. On exploiting 'negative' sensor evidence for target tracking and sensor data fusion[J].Information Fusion, 2007, 8(1): 28–39. doi: 10.1016/j.inffus.2005.09.002
    [15] Ulmke M, Erdinc O, and Willett P. GMTI Tracking via the Gaussian mixture cardinalized probability hypothesis density filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821–1833. doi: 10.1109/TAES.2010.5595597
    [16] Vo B N and Ma W K. The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [17] Hu Zijun. A study of multi-target tracking based on random finite set using radar[D]. [Ph.D. dissertation], Xidian University, 2015: 5–9.
    [18] Vo B T, Vo B N, and Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J].IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
    [19] Yoon J H, Kim D Y, Bae S H,et al.. Joint initialization and tracking of multiple moving objects using Doppler information[J].IEEE Transactions on Signal Processing, 2011, 59(7): 3447–3452. doi: 10.1109/TSP.2011.2132720
  • 加载中
图(6)
计量
  • 文章访问数:  4198
  • HTML全文浏览量:  722
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-01-10
  • 网络出版日期:  2017-02-28

目录

    /

    返回文章
    返回