面向阵列InSAR点云规则化的渐近式建筑立面检测

王伟 许华荣 魏含玉 董秋雷

王伟, 许华荣, 魏含玉, 等. 面向阵列InSAR点云规则化的渐近式建筑立面检测[J]. 雷达学报, 2022, 11(1): 144–156. doi: 10.12000/JR21177
引用本文: 王伟, 许华荣, 魏含玉, 等. 面向阵列InSAR点云规则化的渐近式建筑立面检测[J]. 雷达学报, 2022, 11(1): 144–156. doi: 10.12000/JR21177
WANG Wei, XU Huarong, WEI Hanyu, et al. Progressive building facade detection for regularizing array InSAR point clouds[J]. Journal of Radars, 2022, 11(1): 144–156. doi: 10.12000/JR21177
Citation: WANG Wei, XU Huarong, WEI Hanyu, et al. Progressive building facade detection for regularizing array InSAR point clouds[J]. Journal of Radars, 2022, 11(1): 144–156. doi: 10.12000/JR21177

面向阵列InSAR点云规则化的渐近式建筑立面检测

DOI: 10.12000/JR21177
基金项目: 国家自然科学基金(61991423, U1805264),空间光电测量与感知实验室开放基金(502K0019118),河南省科技攻关项目(212102310397)
详细信息
    作者简介:

    王 伟(1976–),男,河南人,博士,周口师范学院网络工程学院副教授。主要研究方向为计算机视觉

    许华荣(1970–),男,福建人,博士,厦门理工学院计算机与信息工程学院教授。主要研究方向为计算机视觉

    魏含玉(1982–),男,河南人,博士,周口师范学院数学与统计学院副教授。主要研究方向为孤立子与可积系统

    董秋雷(1980–),男,辽宁人,博士,中国科学院自动化研究所研究员,中国科学院大学人工智能学院岗位教授。主要研究方向为计算机视觉与模式分类

    通讯作者:

    董秋雷 qldong@nlpr.ia.ac.cn

  • 责任主编:胡俊 Corresponding Editor: HU Jun
  • 中图分类号: TN957.52

Progressive Building Facade Detection for Regularizing Array InSAR Point Clouds

Funds: The National Natural Science Foundation of China (61991423, U1805264), The Foundation of the Lab of Space Optoelectronic Measurement & Perception (502K0019118), The Science and Technique Project of Henan (212102310397)
More Information
  • 摘要: 为有效地从海量、带噪阵列InSAR空间点中检测建筑立面,该文提出一种基于结构先验的渐进式建筑立面检测算法。该文算法首先将初始阵列InSAR空间点投影至地面以生成与建筑立面相应的连通区域,然后通过结构先验的引导逐步在每个连通区域内检测潜在的线段,进而根据线段及其对应的空间点生成相应的建筑立面;在此过程中,当前连通区域对应线段的检测空间根据其相邻连通区域内已检测线段构造,有效保证了整体效率与可靠性。实验结果表明,该文算法可快速从海量、带噪阵列InSAR空间点中检测出较多的可靠建筑立面,较好地克服了传统多模型拟合算法效率低与可靠性差的缺点。

     

  • 图  1  PBFD算法流程(黄: 投影图生成,蓝: 主线段检测,绿: 潜在线段检测)

    Figure  1.  Flowchart of the PBFD method (yellow: projection map generation, blue: main line segment detection, green: potential line segment detection)

    图  2  投影图生成

    Figure  2.  Projection map generation

    图  3  主线段检测

    Figure  3.  Main line segment detection

    图  4  连通区域内潜在线段检测

    Figure  4.  Potential line segment detection in connected regions

    图  5  连通区域间潜在线段检测

    Figure  5.  Potential line segment detection between connected regions

    图  6  不同算法检测的直线

    Figure  6.  Lines produced by different methods

    图  7  平面生成示例

    Figure  7.  Illustration of plane generation

    图  8  最终生成的建筑立面

    Figure  8.  Final generated facades

    图  9  光学图像示例

    Figure  9.  Examples of optical images

    图  10  不同权重对应的精度

    Figure  10.  Accuracies corresponding to different weights

    图  11  建筑立面检测

    Figure  11.  Building facade detection

    图  12  不同算法检测的直线

    Figure  12.  Lines produced by different methods

     算法1:连通区域间潜在线段检测
     步骤1 从集合$\bar{\mathcal{M} }$中选择具有最高优先级的连通区域$ \mathit{c} $。
     步骤2 根据集合$ \mathit{N}\left(\mathit{c}\right) $内连通区域相应线段与结构先验生成候选直线。
     步骤3 根据式(4)为连通区域$ \mathit{c} $分配最优直线。
     步骤4 将连通区域$ \mathit{c} $移入集合$ \mathcal{M} $并转至步骤1。
     步骤5 若集合$\bar{\mathcal{M} }$为空则输出集合$ \mathcal{M} $中更新的连通区域及相应的线段。
    下载: 导出CSV

    表  1  数据基本信息

    Table  1.   Basic data information

    数据集空间点初始地面点真实直线数
    峨眉1338 K295555
    运城1693 K319340
    下载: 导出CSV

    表  2  不同算法的精度

    Table  2.   Accuracies of different methods

    数据集PBFDCONSAC
    Stage-IStage-IIStage-III
    N-G-LPRF1N-G-LPRF1N-G-LPRF1PRF1
    峨眉33-5-1210.220.3683-7-430.940.730.82109-7-570.900.930.910.790.240.37
    运城27-1-710.180.3171-2-250.970.600.7486-2-340.940.800.860.860.150.26
    下载: 导出CSV

    表  3  不同算法运行时间(秒)

    Table  3.   Running time of different methods (s)

    数据集PBFDCONSAC
    INIStage-IStage-IIStage-IIILPTotal
    峨眉2.12.43.12.51.711.87.3
    运城1.83.14.32.01.512.79.5
    下载: 导出CSV
  • [1] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
    [2] 曾涛, 温育涵, 王岩, 等. 合成孔径雷达参数化成像技术进展[J]. 雷达学报, 2021, 10(3): 327–341. doi: 10.12000/JR21004

    ZENG Tao, WEN Yuhan, WANG Yan, et al. Research progress on synthetic aperture radar parametric imaging methods[J]. Journal of Radars, 2021, 10(3): 327–341. doi: 10.12000/JR21004
    [3] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [4] WANG Yifan, WU Shihao, HUANG Hui, et al. Patch-based progressive 3D point set upsampling[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5951–5960.
    [5] WANG Yuanyuan and ZHU Xiaoxiang. Automatic feature-based geometric fusion of multiview TomoSAR point clouds in urban area[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 953–965. doi: 10.1109/JSTARS.2014.2361430
    [6] RAMBOUR C, DENIS L, TUPIN F, et al. Urban surface reconstruction in SAR tomography by graph-cuts[J]. Computer Vision and Image Understanding, 2019, 188: 102791. doi: 10.1016/j.cviu.2019.07.011
    [7] BARÁTH D and MATAS J. Progressive-X: Efficient, anytime, multi-model fitting algorithm[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3779–3787.
    [8] KLUGER F, BRACHMANN E, ACKERMANN H, et al. CONSAC: Robust multi-model fitting by conditional sample consensus[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4633–4642.
    [9] WANG Wei and GAO Wei. Efficient multi-plane extraction from massive 3D points for modeling large-scale urban scenes[J]. The Visual Computer, 2019, 35(5): 625–638. doi: 10.1007/s00371-018-1492-z
    [10] FISCHLER M A and BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[M]. FISCHLER M A and FIRSCHEIN O. Readings in Computer Vision. Los Altos, USA: Morgan Kaufmann, 1987: 726–740.
    [11] ZULIANI M, KENNEY C S, and MANJUNATH B S. The multiRANSAC algorithm and its application to detect planar homographies[C]. IEEE International Conference on Image Processing 2005, Genova, Italy, 2005: III-153.
    [12] TOLDO R and FUSIELLO A. Robust multiple structures estimation with j-linkage[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 537–547.
    [13] MAGRI L and FUSIELLO A. Robust multiple model fitting with preference analysis and low-rank approximation[C]. British Machine Vision Conference, Swansea, UK, 2015: 20.1–20.12.
    [14] MAGRI L and FUSIELLO A. T-linkage: A continuous relaxation of j-linkage for multi-model fitting[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3954–3961.
    [15] MAGRI L and FUSIELLO A. Fitting multiple heterogeneous models by multi-class cascaded t-linkage[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7452–7460.
    [16] ISACK H and BOYKOV Y. Energy-based geometric multi-model fitting[J]. International Journal of Computer Vision, 2012, 97(2): 123–147. doi: 10.1007/s11263-011-0474-7
    [17] PHAM T T, CHIN T J, YU Jin, et al. The random cluster model for robust geometric fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1658–1671. doi: 10.1109/TPAMI.2013.2296310
    [18] CHIN T J, YU Jin, and SUTER D. Accelerated hypothesis generation for multistructure data via preference analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 625–638. doi: 10.1109/TPAMI.2011.169
    [19] BARATH D and MATAS J. Multi-class model fitting by energy minimization and mode-seeking[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 229–245.
    [20] BARATH D and MATAS J. Graph-Cut RANSAC[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Utah, USA, 2018: 6733–6741. doi: 10.1109/CVPR.2018.00704.
    [21] BRACHMANN E and ROTHER C. Neural-guided RANSAC: Learning where to sample model hypotheses[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 4321–4330.
    [22] ZHU Xiaoxiang and SHAHZAD M. Façade reconstruction using multi-view spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. doi: 10.1109/TGRS.2013.2273619
    [23] SHAHZAD M and ZHU Xiaoxiang. Robust reconstruction of building facades for large areas using spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 752–769. doi: 10.1109/TGRS.2014.2327391
    [24] BALLARD D H. Generalizing the Hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13(2): 111–122. doi: 10.1016/0031-3203(81)90009-1
    [25] VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722–732. doi: 10.1109/TPAMI.2008.300
    [26] HUTTENLOCHER D P, KLANDERMAN G A, and RUCKLIDGE W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850–863. doi: 10.1109/34.232073
    [27] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  607
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-01-28
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回