[1] |
Zaloga J, Rockwell D, and Finnegan P. World Unmanned Aerial Vehicle Systems Market Profile and Forecast[R]. Philip Finnegan, 2012.
|
[2] |
李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505513. DOI: 10.13203/ j.whugis20140045. Li Deren and Li Ming. Research advace and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505513. DOI: 10.13203/j. whugis20140045.
|
[3] |
Global Hawk Specifications[OL]. www.northropgrumman. com/Capabilities/GlobalHawk/Pages/default.aspx.2016.8.
|
[4] |
Raytheon updates HISAR[OL]. https://www.flightglobal. com/news/articles/raytheon-updates-hisar-132426/.2016.8.
|
[5] |
AN/ZPY-2 Multi-Platform Radar Technology Insertion Program (MP-RTIP)[OL]. www.northropgrumman.com/ Capabilities/mprtip.2016.8.
|
[6] |
AN/ZPY-3 Multi-Function Active Sensor (MFAS)[OL]. www.northropgrumman.com/Capabilities/MFAS/Pages/ default.aspx.2016.8.
|
[7] |
Predator_B persistent multi-mission ISR[OL]. www.ga-asi.com/Websites/gaasi/images/products/aircraft_systems/pdf/ Predator_B021915.pdf.2016.8.
|
[8] |
Hensley W H, Doerry A W, and Walker B C. Lynx: a high-resolution synthetic aperture radar[J]. SPIE Aerosense, 1999, 3704: 5158. DOI: 10.1117/12.354602.
|
[9] |
GA-ASI first two-channel Lynx radar demonstrates improved GMTI performance under Darpa dual beam project[OL]. www.ga.com/ga-asi-first-two-channel-lynx-radar- demonstrates-improved-gmti-performance-under-darpa-dual-beam-project.pdf.2016.8.
|
[10] |
RDR-1700B radar series[OL]. https://www.telephonics.com/ soft-gate/gated-assets/uploads/39962-TC-RDR-1700B-Brochure- WEB.pdf.2016.8.
|
[11] |
MiniSAR[OL]. http//www.sandia.gov/radar/images/ SAND2005-3445PMiniSAR-fact-sheetp2-v4-redo.pdf.2014.8.
|
[12] |
Kinghorn A M and Nejman A. PicoSARan advanced lightweight SAR system[C]. European Radar Conference (EuRAD), Italy, 2009: 168171.
|
[13] |
Goulding M M, Stonehouse A, and Nejman A. AESA based dual channel GMTI: mode design flight trials[C]. IEEE Radar Conference (RADAR), Kansas City, 2011: 917921. DOI: 10.1109/RADAR.2011.5960670.
|
[14] |
Knapskog A O. Moving targets and multipath in SAR images of harbour scenes[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 547550.
|
[15] |
Halcrow G, Greig D W, Glass A, et al.. PicoSAR trials results[C]. 2013 14th International Radar Symposium (IRS), Dresden, 2013, 1: 4752.
|
[16] |
I-Master GMTI/SAR radar[OL]. https://www.thalesgroup. com/sites/default/files/asset/document/I-Master%20 Datasheet.pdf.2016.8.
|
[17] |
王岩飞, 刘畅, 李和平, 等. 基于多通道合成的优于0.1 m分辨率的机载SAR系统[J]. 电子与信息学报, 2013, 35(1): 2935. Wang Yanfei, Liu Chang, Li Heping, et al.. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics Information Technology, 2013, 35(1): 2935.
|
[18] |
贾颖新, 王岩飞. 一种宽带多通道合成孔径雷达系统幅相特性测量与校正方法[J]. 电子与信息学报, 2013, 35(9): 21682174. Jia Yingxin and Wang Yanfei. Measurement and calibration of amplitude-phase errors in wideband multi-channel SAR[J]. Journal of Electronics Information Technology, 2013, 35(9): 21682174.
|
[19] |
Hu Jianmin, Wang Yanfei, and Li Heping. Channel phase error estimation and compensation for ultra high-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 10691073. DOI: 10.1109/LGRS.2012.2190133.
|
[20] |
张梅, 刘畅, 王岩飞. 频带合成超高分辨率机载SAR系统的相位误差校正[J]. 电子与信息学报, 2011, 33(12): 28132818. Zhang Mei, Liu Chang, and Wang Yanfei. Channel error correction for ultra-high resolution airborne SAR system with synthetic bandwidth[J]. Journal of Electronics Information Technology, 2011, 33(12): 28132818.
|
[21] |
王岩飞, 刘畅, 詹学丽, 等. 一个高精度无人机载多功能SAR系统[J]. 电子与信息学报, 2013, 35(7): 15691574. Wang Yanfei, Liu Chang, Zhan Xueli, et al.. An ultrafine multifunctional unmanned aerial vehicle SAR system[J]. Journal of Electronics Information Technology, 2013, 35(7): 15691574.
|
[22] |
高许岗, 雍延梅. 无人机载微型SAR系统设计与实现[J]. 雷达科学与技术, 2014, 12(1): 3538. Gao Xugang and Yong Yanmei. Design and realization of UAV high resolution miniature SAR[J]. Radar Science and Technology, 2014, 12(1): 3538.
|
[23] |
Mo Shasha, Wang Yanfei, and Liu Chang. An estimation algorithm for phase errors in synthetic aperture radar imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 18181822. DOI: 10.1109/LGRS.2015.2429744.
|
[24] |
Fan Bangkui, Ding Zegang, Gao Wenbin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57(12): 113.
|
[25] |
Li Yake, Liu Chang, Wang Yanfei, et al.. A robust motion error estimation method based on raw SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 27802790. DOI: 10.1109/TGRS.2011.2175737.
|
[26] |
Edwards M, Provo U T, Madsen D, et al.. microASAR: a small, robust LFM-CW SAR for operation on UAVs and small aircraft[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008: 514517. DOI: 10.1109/IGARSS.2008.4780142.
|
[27] |
Edrich M and Weiss M. Second-generation Ka-band UAV SAR system[C]. European Radar Conference (EuRAD), Amsterdam, 2008: 479482. DOI: 10.1109/EUMC.2008. 4751786.
|
[28] |
Otten M, van Rossum W, van der Graaf M, et al.. Multichannel imaging with the AMBER FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 209212.
|
[29] |
Rossum W, Otten M, and van Dorp P. Multichannel FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 279282.
|
[30] |
Samczyski P, Kulpa K, Malanowski M, et al.. SARENKA: C-band SAR radar for UAV application[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 12871290.
|
[31] |
Wielgo M, Samczynski P, Malanowski M, et al.. The SARENKA SAR system-experimental results of ISAR imaging[C]. International Radar Symposium (IRS), Gdansk, 2014: 14. DOI: 10.1109/IRS.2014.6869263.
|
[32] |
Gromek D, Samczynski P, Kulpa K, et al.. C-band SAR radar trials using UAV platform: experimental results of SAR system integration on a UAV carrier[C]. International Radar Symposium (IRS), Cracow, 2016: 15. DOI: 10.1109/ IRS.2016.7497305.
|
[33] |
Jones C, Minchew B, and Holt B. Polarimetric decomposition analysis of the deepwater horizonoil slick using L-ban UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 2011: 22782281. DOI: 10.1109/IGARSS.2011.6049663.
|
[34] |
Lee J, Strovers B, and Lin V. C-20A/GIII precision autopilot development in support of NASAs UAVSAR program[OL]. https://esto.nasa.gov/conferences/nstc2007/ papers/Lee_James_B4P3_NSTC-07-0013.pdf.2016.8.
|
[35] |
Fore G, Chapman D, Hawkins P, et al.. UAVSAR polarimetric calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 34813491. DOI: 10.1109/TGRS.2014.2377637.
|
[36] |
Kim D, Hensley S, and Yun S. Robust change detection in urban area using multi-temporal polarimetric UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 28012804. DOI: 10.1109/IGARSS.2015.7326396.
|
[37] |
Acevo R, Aguasca A, Mallorqui J J, et al.. High-compacted FM-CW SAR for boarding on small UAVs[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 543546. DOI: 10.1109/IGARSS.2009. 5418139.
|
[38] |
Cuerda J M, Gonz lez, M J, Gmez M, et al.. INTAs developments for UAS and small platforms: QUASAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 9991002. DOI: 10.1109/IGARSS.2009.5417548.
|
[39] |
del Castillo Mena, Sanchez Sevilleja J, Larraaga Sudupe S, et al.. RF design for QUASAR Ku-band polarimetric SAR system[C]. European Radar Conference (EuRAD), Paris, 2010: 459462.
|
[40] |
Remy A, de Macedo A C, and Moreira R. The first UAV-based P-band X-band interferometric SAR system[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012: 50415044. DOI: 10.1109/ IGARSS.2012.6352478.
|
[41] |
Shiroma G, de Macedo K A C, Wimmer C, et al.. The dual-band PolInSAR method for forest parametrization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 31893201. DOI: 10.1109/ JSTARS.2016.2520900.
|
[42] |
Alberti G, Citarella L, Ciofaniello L, et al.. Current status of the development of an Italian airborne SAR system (MINISAR)[J]. SPIE, 2004, 5236: 5359. DOI: 10.1117/12.512224.
|
[43] |
Essen H, Brutigam M, Sommer R, et al.. SUMATRA-A UAV based miniaturized SAR system[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 437440.
|
[44] |
Caris M, Stanko S, Sommer R, et al.. SARapesynthetic aperture radar for all weather penetrating UAV application[C]. International Radar Symposium (IRS), Dresden, 2013, 1: 4146.
|
[45] |
Klare J, Wei M, Brenner A, et al.. ARTINO: A new high resolution 3D imagingradar system on an autonomous airborne platform[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 38423845. DOI: 10.1109/IGARSS.2006.985.
|
[46] |
Klare J, Cerutti D, Brenner A, et al.. Image quality analysis of the vibratingsparse MIMO antenna array of the airborne 3D imaging radar ARTINO[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53105314. DOI: 10.1109/IGARSS.2007.4424061.
|
[47] |
Weiss M and Gilles M. Initial ARTINO radar experiments[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 14.
|
[48] |
Weiss M, Peters O, and Ender J. First flight trials with ARTINO[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
|
[49] |
Nouvel F, Jeuland H, Bonin G, et al.. A Ka-band imaging radar: DRIVE on board ONERA Motorglider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 134136. DOI: 10.1109/ IGARSS.2006.39.
|
[50] |
Nouvel F, Roques S, and Plessis O. A low-cost imaging radar: DRIVE on board ONERA motor glider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53065309. DOI: 10.1109/IGARSS.2007.4424060.
|
[51] |
Nouvel F, Dubois-Fernandez P, and Dupuis X. The Ka SAR airborne compaign[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 44714474. DOI: 10.1109/IGARSS.2013.6723828.
|
[52] |
Nouvel F and Plessis O. The ONERA compact SAR in Ka band[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
|
[53] |
Sumantyo S, Chet K V, and Triharjanto R. Development of circularly polarized synthetic aperture radar onboard unmanned aerial vehicle (CP-SAR UAV)[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 23012304. DOI: 10.1109/IGARSS. 2013.6723278.
|
[54] |
Sumantyo S. Progress on development of synthetic aperture radar onboard UAV and microsatellite[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Qubec, 2014: 10811084. DOI: 10.1109/IGARSS.2014. 6946616.
|
[55] |
Rodriguez-Cassola M, Younis M, Krieger G, et al.. Spaceborne to UAV bistatic radar system for high-resolution imaging and autonomous navigation[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 740743.
|