Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation(in English)

Yin Qiang Li Yang Huang Ping-ping Lin Yun Hong Wen

Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050
Citation: Yin Qiang, Li Yang, Huang Ping-ping, Lin Yun, Hong Wen. Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation(in English)[J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/JR15075
张强, 万显荣, 傅, 饶云华, 龚子平. 基于CDR 数字音频广播的外辐射源雷达信号模糊函数分析与处理[J]. 雷达学报, 2014, 3(6): 702-710. doi: 10.12000/JR14050
引用本文: 尹嫱, 李洋, 黄平平, 林赟, 洪文. 土壤湿度变化引起的干涉SAR相干性损失分析(英文)[J]. 雷达学报, 2015, 4(6): 689-697. doi: 10.12000/JR15075

Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation

DOI: 10.12000/JR15075 cstr: 32380.14.JR15075
Funds: 

Supported by the National Natural Science Foundation of China (61431018, 61201404, 61461040) and the Special Project of Inner Mongolia Key Science Technology.

  • 摘要:

    干涉SAR的相干性对于数据质量的衡量和与后向散射结合的目标信息提取,都具有重要的意义。然而相比其他的去相干源,土壤湿度变化引起的重轨干涉SAR的去相干尚未得到充分的研究。该文利用EnvisatASAR和暗室数据分析了由土壤湿度变化引起的重轨干涉SAR的相干性损失。C波段ASAR数据仅在裸土或草地区域具有较高的相干性,意味着这两种陆地覆盖类型比较适合作为土壤湿度变化对星载数据干涉相干性影响的研究对象。此外重访周期短的星载SAR即使对于农田区域具有重要的应用潜力。由于微波暗室的可控环境,特别是能够去除其他去相干源的影响,因而设计开展了暗室实验,并详细分析了土壤样本的观测数据。实验发现低频2-2.5 GHz具有较高的相干性,并且对土壤湿度初值的敏感度较低。这表示在利用干涉相干性信息提取土壤湿度变化时,至少是在相干性水平和对土壤湿度初值的敏感度方面,S波段优于C波段。

     

  • [1] Barrett B, Whelan P, and Dwyer E. Detecting changes in surface soil moisture content using differential SAR interferometry[J]. International Journal of Remote Sensing, 2013, 34(20): 7091-7112.
    [2] Gabriel A, Goldstein R, and Zebker H. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research, 1989, 94: 9183-9191.
    [3] Hajnsek I and Prats P. Soil moisture estimation in time with D-InSAR[C]. IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 546-549.
    [4] Hensley S, Michel T, Van Zyl J, et al.. Effect of soil moisture on polarimetric-interferometric repeat pass observations by UAVSAR during 2010 Canadian soil moisture campaign[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 1063-1066.
    [5] Zhang T, Zeng Q, Li Y, et al.. Study on relation between InSAR coherence and soil moisture[C]. ISPRS Congress, Beijing, China, 2008: 131-134.
    [6] Nesti G, Tarchi D, and Rudant J. Decorrelation of backscattered signal due to soil moisture changes[C]. IEEE International Geoscience and Remote Sensing Symposium, Firenze, Italy, 1995: 2026-2028.
    [7] Nolan M, Fatland D, and Hinzman L. DInSAR measurement of soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2802-2813.
    [8] Morrison K, Bennett J, Nolan M, et al.. Laboratory measurement of the DInSAR response to spatiotemporal variations in soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3815-3823.
    [9] De Zan F, Parizzi A, Prats-Iraola P, et al.. A SAR interferometric model for soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 418-425.
    [10] Yin Q, Hong W, Li Y, et al.. analysis on soil moisture estimation of SAR data based on coherent scattering model[J]. 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 739-742.
    [11] Zwieback S, Hensley S, and Hajnsek I. Assessment of soil moisture effects on L-band radar interferometry[J]. Remote Sensing of the Environment, 2015, 164: 77-89.
  • 加载中
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 修回日期:  2015-10-12
  • 网络出版日期:  2015-12-28

目录

    /

    返回文章
    返回