Micromotions Parameter Extraction of Birds and Rotary-wing unmanned aerial vehicles Based on Vortex Radar
-
摘要: 针对当前对飞鸟和旋翼无人机(UAVs)识别的迫切需求,该文提出了一种基于涡旋雷达的目标参数提取方法。工作核心聚焦于目标参数获取,在建模与参数提取维度上进行了系统扩展。首先分别对飞鸟主体运动与扑翼行为、以及旋翼无人机的旋翼转动与机体结构进行了数学建模与分析,推导了散射点对应的径向多普勒与旋转多普勒频移表达式,并从雷达回波信号中提取微多普勒特征,实现目标参数反演。对于鸟类目标,基于回波信号的频谱峰值提取径向多普勒估计飞行速度,并结合散射点旋转多普勒频移公式,通过短时傅里叶变换(STFT)计算旋转多普勒变化,实现对扑翼长度的估计,在低信噪比(SNR)条件下,扑翼长度估计误差保持在0.03 m以内。对于旋翼无人机目标,首先建立回波信号模型,推导微多普勒频移中径向与旋转分量的解析关系,并结合重构的多普勒信息与距离–时间维度,反演获得欧拉角、旋翼转速、旋翼长度以及机体到旋翼的距离等共6项结构与运动参数,各参数的估计误差显著低于传统基于单一多普勒的方法,其参数提取误差均保持在2%以内。仿真结果表明,该文提出的基于涡旋雷达的鸟类与旋翼无人机参数提取方法能够实现多参数的高精度获取,并在低信噪比条件下仍保持稳定可靠的性能,验证了方法的有效性与工程应用潜力。Abstract: To address the urgent need to identify birds and rotary-wing unmanned aerial vehicles (UAVs), this paper proposes a vortex radar–based method for extracting micromotion parameters of targets. The study focused on target parameter acquisition and systematically extended target modeling and parameter extraction strategies. First, mathematical models were developed for the body motion and wing flapping behavior of birds as well as for the rotor movement characteristics and body structure of rotary-wing UAVs. Further, analytical expressions for the radial and rotational Doppler frequency shifts at scattering points were derived, and micro-Doppler features were extracted from radar echo signals to enable target parameter inversion. For bird targets, the radial Doppler frequency was estimated by extracting the spectral peak of the echo signal to obtain the flight velocity. In addition, by combining the rotational Doppler frequency shifts of the scattering points and analyzing the variations of the rotational Doppler frequency using the short-time Fourier transform (STFT), the wing-flapping length was estimated. Even under low signal-to-noise ratio (SNR) conditions, the estimation error of the wing-flapping length remained within 0.03 m. For rotary-wing UAV targets, an echo signal model was first constructed, and the analytical relationship between the radial and rotational components of the micro-Doppler frequency shift was derived. Using the reconstructed Doppler information and through range–time domain analysis, six structural and motion parameters were retrieved, including the Euler angles rotor rotational speed, rotor length, and the distance between the UAV body and rotor. The estimation errors for all parameters were significantly lower than those obtained with conventional approaches based on individual Doppler features, with all parameters remaining within 2%. Simulation results demonstrated that the proposed vortex radar–based parameter extraction method enables accurate multiparameter estimation for birds and rotary-wing UAVs. The method also exhibits stable and reliable performance under low SNR conditions, confirming its effectiveness and applicability in practical engineering scenarios.
-
表 1 主要仿真参数
Table 1. Primary simulation parameters
参数 数值 中心频率f0 10 GHz 带宽 200 MHz OAM模式大小 –10和10 鸟类目标的扑翼频率fbird 2 Hz 鸟类目标的飞行速度v 2 m/s 鸟类目标的距离、方位角、俯仰角 (100 m, 60°, 10°) 鸟类目标的扑翼长度lbird 0.5 m 旋翼无人机的旋转频率f 50 Hz 旋翼无人机的旋翼长度ra 0.5 m 旋翼无人机机体到旋翼的长度l 1 m 旋翼无人机的欧拉角$ (\psi ,\theta ,\phi ) $ (60°, 30°, 45°) 旋翼无人机的距离、方位角、俯仰角 (500 m, 30°, 45°) 表 2 估计结果以及归一化误差
Table 2. Estimated results and corresponding normalized errors
参数 真实值 估计值 δ fbird (Hz) 2 2 0% v (m/s) 2 2.011 0.55% lbird (m) 0.5 0.485 3% f (Hz) 50 50 0% ra (m) 0.5 0.5017 0.34% l (m) 1 1.006 0.6% ψ 60° 60.25° 0.41% θ 30° 29.82° 0.6% $ \phi $ 45° 44.68° 0.7% 表 3 飞鸟和旋翼无人机的参数及其特征对比表
Table 3. Comparison of parameters and characteristics between birds and rotary-wing UAVs
参数类型 具体参数 飞鸟目标 旋翼无人机目标 最大多普勒频率 fmax 243.36 Hz 8829.45 Hz多普勒频谱图 / 非对称周期性调制 对称的正弦曲线簇 旋转多普勒频率值 fD-a 0.632 Hz 5.735 Hz 运动频率 ω 4π 100π 表 4 涡旋电磁波与传统平面波参数提取精度对比结果
Table 4. Comparison of parameter extraction accuracy between vortex electromagnetic waves and traditional plane waves
表 5 涡旋电磁波参数提取对比表(%)
Table 5. Comparison of parameter extraction methods using vortex electromagnetic waves(%)
方法 SNR(dB) ra ω ψ θ $ \phi $ l 文献[24] 5 18.00 2.50 17.10 / / / 15 8.52 1.47 4.56 / / / 25 5.60 1.06 1.33 / / / 文献[25] 5 17.98 1.86 12.47 5.56 6.01 / 15 7.88 1.33 4.67 2.90 3.15 / 25 5.48 0.96 2.88 0.56 1.95 / 本文 5 0.52 0.04 1.36 1.26 0.89 0.64 15 0.42 0.01 0.82 0.92 0.65 0.49 25 0.34 0 0.50 0.7 0.45 0.45 -
[1] JIAN M, LU Zhenzhong, and CHEN V C. Experimental study on radar micro-Doppler signatures of unmanned aerial vehicles[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 854–857. doi: 10.1109/RADAR.2017.7944322. [2] DE WIT J J M, HARMANNY R I A, and PRÉMEL-CABIC G. Micro-Doppler analysis of small UAVs[C]. The 9th European Radar Conference, Amsterdam, Netherlands, 2012: 210–213. [3] NANZER J A and CHEN V C. Microwave interferometric and Doppler radar measurements of a UAV[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1628–1633. doi: 10.1109/RADAR.2017.7944468. [4] RAHMAN S and ROBERTSON D A. Millimeter-wave micro-Doppler measurements of small UAVs[C]. SPIE 10188, Radar Sensor Technology XXI, Anaheim, USA, 2017: 101880T. doi: 10.1117/12.2261942. [5] GOVONI M A. Micro-Doppler signal decomposition of small commercial drones[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 425–429. doi: 10.1109/RADAR.2017.7944240. [6] HANIF A, MUAZ M, HASAN A, et al. Micro-Doppler based target recognition with radars: A review[J]. IEEE Sensors Journal, 2022, 22(4): 2948–2961. doi: 10.1109/JSEN.2022.3141213. [7] HARMANNY R I A, DE WIT J J M, and PRÉMEL CABIC G. Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram[C]. The 11th European Radar Conference, Rome, Italy, 2014: 165–168. doi: 10.1109/EuRAD.2014.6991233. [8] 陈宏昆, 察豪, 刘峰. 鸟类目标微多普勒分析及参数估计[J]. 电讯技术, 2019, 59(4): 431–436. doi: 10.3969/j.issn.1001-893x.2019.04.011.CHEN Hongkun, CHA Hao, and LIU Feng. Micro-Doppler analysis and parameter estimation of bird target[J]. Telecommunication Engineering, 2019, 59(4): 431–436. doi: 10.3969/j.issn.1001-893x.2019.04.011. [9] RAHMAN S and ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports, 2018, 8(1): 17396. doi: 10.1038/s41598-018-35880-9. [10] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7–17. doi: 10.16592/j.cnki.1004-7859.2017.02.002.CHEN Weishi and LI Jing. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7–17. doi: 10.16592/j.cnki.1004-7859.2017.02.002. [11] LI Liulin, YUE Wei, KAI Chengzhi, et al. Perfect acoustic-vortexes constructed by the Fourier transform of quasi-Bessel beams based on the simplified ring array of sectorial planar transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(7): 748–758. doi: 10.1109/TUFFC.2023.3277854. [12] 郭忠义, 王运来, 汪彦哲, 等. 涡旋雷达成像技术研究进展[J]. 雷达学报, 2021, 10(5): 665–679. doi: 10.12000/JR21075.GUO Zhongyi, WANG Yunlai, WANG Yanzhe, et al. Research advances in vortex radar imaging technology[J]. Journal of Radars, 2021, 10(5): 665–679. doi: 10.12000/JR21075. [13] LI Liulin, LIU Bingyi, and GUO Zhongyi. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method[J]. The Journal of the Acoustical Society of America, 2024, 155(5): 3195–3205. doi: 10.1121/10.0025988. [14] GUO Kai, LEI Shuang, LEI Yi, et al. Research on detecting targets’ accelerations based on vortex electromagnetic wave in non-line-of-sight scenario[J]. IEEE Sensors Journal, 2023, 23(4): 4078–4084. doi: 10.1109/JSEN.2022.3232364. [15] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814. [16] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091.GUO Zhongyi, WANG Yanzhe, ZHANG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091. [17] ZHANG Lingling, ZHU Yongzhong, CHEN Yijun, et al. Three-dimensional micro-Doppler parameter estimation of rotor target based on VEMW radar[J]. IEEE Sensors Journal, 2025, 25(6): 10155–10162. doi: 10.1109/JSEN.2025.3533009. [18] YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169. [19] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970. [20] LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698. [21] MAO Rongrong, LIU Kang, LIU Hongyan, et al. Electromagnetic vortex imaging based on OAM multiplexing beam with orthogonal polyphase coding[J]. IEEE Sensors Journal, 2023, 23(24): 30786–30793. doi: 10.1109/JSEN.2023.3329359. [22] WANG Siyuan, QU Yi, CHEN Yijun, et al. Three-dimensional interferometric imaging with vortex electromagnetic wave radar based on uniform circular array[J]. IEEE Sensors Journal, 2024, 24(20): 32858–32870. doi: 10.1109/JSEN.2024.3453869. [23] WANG Yu, LIU Kang, LIU Hongyan, et al. Detection of rotational object in arbitrary position using vortex electromagnetic waves[J]. IEEE Sensors Journal, 2021, 21(4): 4989–4994. doi: 10.1109/JSEN.2020.3032665. [24] 王煜, 刘康, 王建秋, 等. 涡旋电磁波雷达锥体目标旋转多普勒探测[J]. 雷达学报, 2021, 10(5): 740–748. doi: 10.12000/JR21074.WANG Yu, LIU Kang, WANG Jianqiu, et al. Rotational Doppler detection of a cone-shaped target under the illumination of a vortex electromagnetic wave[J]. Journal of Radars, 2021, 10(5): 740–748. doi: 10.12000/JR21074. [25] ZHOU Hongping, PENG Chao, LEI Yi, et al. Estimating parameters of ballistic target by single hybrid radar based on vortex and wideband electromagnetic waves[J]. IEEE Sensors Journal, 2023, 23(21): 26423–26429. doi: 10.1109/JSEN.2023.3312442. [26] LI Rui, LI Liulin, ZHOU Hongping, et al. OAM-radar imaging: A review[J]. Defence Technology, 2025. doi: 10.1016/j.dt.2025.11.021. [27] 屈海友, 程迪, 陈畅, 等. 涡旋雷达高分辨率稀疏自校正相位误差成像[J]. 雷达学报, 2021, 10(5): 699–717. doi: 10.12000/JR21094.QU Haiyou, CHENG Di, CHEN Chang, et al. High-resolution sparse self-calibration imaging for vortex radar with phase error[J]. Journal of Radars, 2021, 10(5): 699–717. doi: 10.12000/JR21094. [28] 蒋彦雯, 范红旗, 李双勋. 基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法[J]. 雷达学报, 2021, 10(5): 718–724. doi: 10.12000/JR21151.JIANG Yanwen, FAN Hongqi, and LI Shuangxun. A sparse Bayesian learning approach for vortex electromagnetic wave three-dimensional imaging in the Terahertz band[J]. Journal of Radars, 2021, 10(5): 718–724. doi: 10.12000/JR21151. [29] WANG Siyuan, CHEN Yijun, QU Yi, et al. Vortex electromagnetic radar imaging and adaptive resource scheduling based on uniform concentric circular arrays[J]. IEEE Sensors Journal, 2024, 24(14): 22658–22671. doi: 10.1109/JSEN.2024.3405969. [30] 罗迎, 龚逸帅, 陈怡君, 等. 基于跟踪脉冲的MIMO雷达多目标微动特征提取[J]. 雷达学报, 2018, 7(5): 575–584. doi: 10.12000/JR18035.LUO Ying, GONG Yishuai, CHEN Yijun, et al. Multi-target micro-motion feature extraction based on tracking pulses in MIMO radar[J]. Journal of Radars, 2018, 7(5): 575–584. doi: 10.12000/JR18035. [31] LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914. [32] 郭忠义, 汪彦哲, 王运来, 等. 涡旋电磁波旋转多普勒效应研究进展[J]. 雷达学报, 2021, 10(5): 725–739. doi: 10.12000/JR21109.GUO Zhongyi, WANG Yanzhe, WANG Yunlai, et al. Research advances on the rotational Doppler effect of vortex electromagnetic waves[J]. Journal of Radars, 2021, 10(5): 725–739. doi: 10.12000/JR21109. [33] 林屹峰, 单明明, 孔旭东, 等. 涡旋电磁波轨道角动量模态抗干扰性能分析[J]. 雷达学报, 2021, 10(5): 773–784. doi: 10.12000/JR21096.LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096. [34] YUAN Hang, LUO Ying, CHEN Yijun, et al. Micro-motion parameter extraction of rotating target based on vortex electromagnetic wave radar[J]. IET Radar, Sonar & Navigation, 2021, 15(12): 1594–1606. doi: 10.1049/rsn2.12149. [35] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626–634. doi: 10.1109/72.761722. [36] XUE Yuanhe, YAN Wei, ZHOU Mengxia, et al. Electromagnetic interference feature extraction for permanent magnet synchronous motors currents based on fast independent component analysis[J]. IEEE Transactions on Consumer Electronics, 2025, 71(4): 10057–10065. doi: 10.1109/TCE.2025.3615955. [37] LIU Dongju and Yu JIAN. Otsu method and K-means[C]. The Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, 2009: 344–349. doi: 10.1109/HIS.2009.74. [38] QIN Xiaoyu, DENG Bin, and WANG Hongqiang. Micro-Doppler feature extraction of rotating structures of aircraft targets with terahertz radar[J]. Remote Sensing, 2022, 14(16): 3856. doi: 10.3390/rs14163856. -
作者中心
专家审稿
责编办公
编辑办公
下载: