结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法

张柘 张冰尘 洪文 吴一戎

张柘, 张冰尘, 洪文, 吴一戎. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法[J]. 雷达学报, 2016, 5(1): 25-34. doi: 10.12000/JR15055
引用本文: 张柘, 张冰尘, 洪文, 吴一戎. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法[J]. 雷达学报, 2016, 5(1): 25-34. doi: 10.12000/JR15055
Zhang Zhe, Zhang Bingchen, Hong Wen, Wu Yirong. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm[J]. Journal of Radars, 2016, 5(1): 25-34. doi: 10.12000/JR15055
Citation: Zhang Zhe, Zhang Bingchen, Hong Wen, Wu Yirong. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm[J]. Journal of Radars, 2016, 5(1): 25-34. doi: 10.12000/JR15055

结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法

DOI: 10.12000/JR15055
基金项目: 

国家973项目(2010CB731905)稀疏微波成像的理论、体制和方法研究

详细信息
    作者简介:

    张柘(1988-),男,中国科学院电子学研究所博士生,研究方向为稀疏微波成像。张冰尘(1973-),男,中国科学院电子学研究所研究员,研究方向为稀疏微波成像。洪文(1968-),女,中国科学院电子学研究所研究员,研究方向为微波成像技术与应用。吴一戎(1964-),男,中国科学院电子学研究所研究员,中国科学院院士,研究方向为微波成像技术与应用。

    通讯作者:

    张柘pzhgrsrs@gmail.com

Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm

Funds: 

The National Basic Research Program (973 Program) of China under grant 2010CB731905 Studies on theory, system, and methodology of Sparse Microwave Imaging

  • 摘要: 稀疏微波成像是将稀疏信号处理理论引入微波成像中,利用系统的稀疏约束突破传统合成孔径雷达(SAR)成像中系统复杂度的瓶颈,是微波成像的新理论、新体制和新方法。在传统的机载SAR成像中都会面临非理想运动带来的回波相位误差问题,可通过基于回波数据的自聚焦算法加以解决;但在机载稀疏微波成像中,因稀疏微波成像采用稀疏重建算法取代了传统SAR中基于匹配滤波的信号处理方法,传统的基于回波数据的自聚焦算法难以直接应用。现有基于稀疏重建的自聚焦算法主要基于两步迭代方法,收敛速度慢、运算量大。该文以基于回波模拟算子的快速稀疏微波成像算法为基础,将子孔径相关(MD)自聚焦算法引入,与之结合构建了新的MD-回波模拟算子自聚焦算法。该方法继承了基于回波模拟算子算法快速重建的优势,并利用MD自聚焦算法实现了回波2次相位误差的正确补偿,与现有基于两步迭代的稀疏微波成像自聚焦算法相比,收敛速度快,并可以实现较好的自聚焦效果。

     

  • [1] Zhang B, Hong W, and Wu, Y. Sparse microwave imaging: principles and applications[J]. Science China Information Science (Series F), 2012, 55(8): 1722-1754.
    [2] Hong W, Zhang B, Zhang Z, et al.. Radar imaging with sparse constraint: principle and initial experiment[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar (EUSAR) 2014, Berlin, Germany, 2014: 1-4.
    [3] Fang J, Zhang B, Xu Z, et al.. On selection of the observation model for multilook application of sparse microwave imaging[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar, EUSAR 2014, Berlin, Germany, 2014: 1-4.
    [4] Fang J, Xu Z, Jiang C, et al.. SAR range ambiguity suppression via sparse regularization[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Mnich, Germany, 2012: 3811-3814.
    [5] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383-395. Wu Y, Hong W, Zhang B, et al.. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383-395.
    [6] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123-129. Liao M, Wei L, Wang Z, et al.. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123-129.
    [7] Brown W M. SAR resolution in the presence of phase errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(6): 808-814.
    [8] 张澄波. 综合孔径雷达:原理、分析与应用[M]. 北京: 科学出版社, 1989. Zhang C. Synthetic Aperture Radar: Principle, Analysis and Application[M]. Beijing, Science Press, 1989.
    [9] 胡克彬, 张晓玲, 师君, 等. 基于图像强度最优的SAR高精度运动补偿方法[J]. 雷达学报, 2015, 4(1): 60-69. Hu K, Zhang X, Shi J, et al.. A high-precision motion compensation method for SAR based on image intensity optimization[J]. Journal of Radars, 2015, 4(1): 60-69.
    [10] Calloway T M and Donohoe G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617-621.
    [11] 李银伟, 陈立福, 韦立登, 等. 基于多普勒域多通道的机载合成孔径雷达自聚焦算法[J]. 电子与信息学报, 2015, 37(4): 969-974. Li Y, Chen L, Wei L, et al.. An autofocus algorithm based on Doppler-domain multichannel for airborne SAR[J]. Journal of Electronics Information Technology, 2015, 37(4): 969-974.
    [12] Eichel P and Jakowatz C Jr. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Optics Letters, 1989, DOI: 10.1364/OL.14.001101.
    [13] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar -Signal Processing Algorithms[M]. Norwood: MA, Artech House, 1995.
    [14] 赵曜, 张冰尘, 洪文, 等. 基于RIPless 理论的稀疏微波成像波形分析方法[J]. 雷达学报, 2013, 2(3): 265-270. Zhao Y, Zhang B, Hong W, et al.. RIPless based radar waveform analysis in sparse microwave imaging[J]. Journal of Radars, 2013, 2(3): 265-270.
    [15] 蒋成龙, 赵曜, 张柘, 等. 基于相关准则的稀疏微波成像方位向采样优化方法[J]. 电子与信息学报, 2015, 37(3): 580-586. Jiang C, Zhao Y, Zhang Z, et al.. Azimuth sampling optimization scheme for sparse microwave imaging based on mutual coherence criterion[J]. Journal of Electronics and Information Technology, 2015, 37(3): 580-586.
    [16] Xiang Y, Zhang B, and Hong W. Study on the sparse sub-block microwave imaging based on lasso[J]. Journal of Radars, 2013, 2(3): 271-277.
    [17] Onhon N O and Cetin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075-2088.
    [18] Ugur S and Ar?kana O. SAR image reconstruction and autofocus by compressed sensing[J]. Digital Signal Processing, 2012, 22(6): 923-932.
    [19] etin M, nhon N O, and Samadi S. Handling phase in sparse reconstruction for SAR: Imaging, autofocusing, and moving targets[C]. European Conference on Synthetic Aperture Radar (EUSAR) 2012, Nuremberg, Germany, 2012: 207-210.
    [20] nhon N O and etin M. SAR moving target imaging using group sparsity[C]. 2013 Proceedings of the 21st European Signal Processing Conference (EUSIPCO), Morocco, 2013: 1-5.
    [21] Giusti E, Tomei S, Bacci A, et al.. Autofocus for CS based ISAR imaging in the presence of gapped data[C]. Workshop on Compressive Sensng Applied to Radar (CoSeRa) 2013, 2013: 1-4.
    [22] Kelly S I, Yaghoobi M, and Davies M E. Auto-focus for compressively sampled SAR[C]. Workshop on Compress Sensng Applied to Radar (CoSeRa) 2012, Bonn, Germany, 2012.
    [23] Ugur S, Ar?kan O, and Gurbuz A C. Autofocused sparse SAR image reconstruction by EMMP algorithm[C]. Workshop on Compressive Sensng Applied to Radar (CoSeRa) 2012, Bonn, Germany, 2012.
    [24] Fang J, Xu Z, Zhang B, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352-363.
    [25] Jiang C, Zhang B, Fang J, et al.. Efficient lq regularization algorithm with range-azimuth decoupled for SAR imaging[J]. Electronics Letters, 2014, 50(3): 204-205.
    [26] Cands E J and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    [27] Kasilingam D, Wang J, Lee J, et al.. Focusing of synthetic aperture radar images of moving targets using minimum entropy adaptive filters[C]. IEEE Proceedings of International Geoscience and Remote Sensing Symposium, Honolulu, HI, 2000, 1: 74-76.
  • 加载中
计量
  • 文章访问数:  3193
  • HTML全文浏览量:  549
  • PDF下载量:  1562
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-08
  • 修回日期:  2015-06-06
  • 网络出版日期:  2016-02-28

目录

    /

    返回文章
    返回