基于复图像的稀疏SAR成像方法在高分三号数据上的验证

毕辉 张冰尘 洪文 吴一戎

毕辉, 张冰尘, 洪文, 等. 基于复图像的稀疏SAR成像方法在高分三号数据上的验证[J]. 雷达学报, 2020, 9(1): 123–130. doi: 10.12000/JR19092
引用本文: 毕辉, 张冰尘, 洪文, 等. 基于复图像的稀疏SAR成像方法在高分三号数据上的验证[J]. 雷达学报, 2020, 9(1): 123–130. doi: 10.12000/JR19092
BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092
Citation: BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092

基于复图像的稀疏SAR成像方法在高分三号数据上的验证

DOI: 10.12000/JR19092
基金项目: 国家自然科学基金(61901213),江苏省自然科学基金(BK20190397),江苏省科协青年科技人才托举工程
详细信息
    作者简介:

    毕 辉(1991–),男,籍贯山东,博士,副研究员,硕士生导师。2017年在中国科学院大学获得博士学位,现担任南京航空航天大学副研究员。主要研究方向为稀疏微波成像、雷达信号处理、雷达成像等

    张冰尘(1973–),男,籍贯浙江,博士,研究员,博士生导师。2017年在中国科学院大学获得博士学位,现担任中国科学院空天信息研究院研究员。主要研究方向为微波遥感与雷达技术、稀疏信号处理等

    洪 文(1968–),女,籍贯上海,博士,研究员,博士生导师。1997年在北京航空航天大学获得博士学位,现担任中国科学院空天信息创新研究院研究员。主要研究方向为合成孔径雷达成像与系统及其应用、极化/极化干涉合成孔径雷达数据处理及应用、3维微波成像新概念新体制新方法等

    吴一戎(1963–),男,籍贯安徽,博士,中国科学院院士,研究员,博士生导师。2001年在中国科学院电子学研究所获得博士学位,现担任中国科学院空天信息创新研究院院长。主要研究方向为微波成像理论与技术、雷达信号处理与雷达系统等

    通讯作者:

    毕辉 bihui@nuaa.edu.cn

  • 中图分类号: TN957.5

Verification of Complex Image Based Sparse SAR Imaging Method on GaoFen-3 Dataset

Funds: The National Natural Science Foundation of China (61901213), The Natural Science Foundation of Jiangsu Province (BK20190397), The Young Science and Technology Talent Support Project of Jiangsu Science and Technology Association
More Information
  • 摘要: 基于稀疏信号处理的合成孔径雷达(SAR)成像(稀疏SAR成像)是稀疏微波成像的一个重要研究方向,相较于经典SAR,稀疏SAR成像在提升成像性能等方面具有重要优势。然而,受困于较大计算代价,其难以用于大观测场景的稀疏恢复,这极大限制了其应用范围。此外,无论军用还是民用,各国星载SAR系统的技术性能指标均是保密的,因此相较于原始回波,通常的公开数据都是经匹配滤波算法重构的SAR复图像。因而如何基于复图像数据进行稀疏成像,对提升现有SAR图像质量、降低稀疏成像计算代价具有重要意义。高分三号是我国首颗1 m分辨率C波段多极化SAR卫星,它具有成像分辨率高、幅宽大等优势,对提升我国灾害监测、海洋监视等能力具有重要作用。该文将一种基于复图像数据的稀疏SAR成像技术引入到高分三号SAR复图像的性能提升当中。实验结果表明,经稀疏处理后的图像拥有更低的旁瓣、更高的信杂噪比以及更优的目标可分辨率能力。且类似于匹配滤波算法重建图像,稀疏恢复结果也可以很好地保持图像统计分布及相位信息,使得稀疏重构的高分三号SAR图像仍适用于干涉、恒虚警率检测等应用。

     

  • 图  1  不同方法的海岸线区域重建结果

    Figure  1.  The reconstructed images of coastal area by different methods

    图  2  不同方法的海面舰船重建结果

    Figure  2.  The reconstructed images of ships on the sea surface by different methods

    图  3  不同方法的城市区域重建结果

    Figure  3.  The reconstructed images of city by different methods

    图  4  稀疏SAR成像方法重构图像背景统计分布保持

    Figure  4.  Background distribution preservation of sparse SAR imaging method recovered image

    图  5  稀疏SAR成像方法重构图像相位信息保持

    Figure  5.  Phase information preservation of sparse SAR imaging method recovered image

    图  6  匹配滤波图像与本文稀疏SAR成像方法非稀疏解之间的相位差

    Figure  6.  Phase difference between the MF recovered image and the non-sparse solution of sparse SAR imaging method

    表  1  不同方法重建结果的目标背景比TBR(dB)

    Table  1.   TBR values of the recovered images by different methods (dB)

    区域/方法匹配滤波重构图像稀疏解非稀疏解
    区域130.283541.837941.8346
    区域234.249644.398144.3956
    区域339.994850.953750.9509
    下载: 导出CSV
  • [1] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York, USA: Wiley-Interscience, 1991.
    [2] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [3] ZHANG Bingchen, HONG Wen, and WU Yirong. Sparse microwave imaging: Principles and applications[J]. Science China Information Sciences, 2012, 55(7): 1722–1754.
    [4] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105

    WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105
    [5] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [6] CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
    [7] NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617–644. doi: 10.1109/T-AIEE.1928.5055024
    [8] SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10–21.
    [9] ÇETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
    [10] BHATTACHARYA S, BLUMENSATH T, MULGREW B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. The 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007: 448–452.
    [11] ALONSO M T, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    [12] PATEL V M, EASLEY G R, HEALY JR D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. doi: 10.1109/JSTSP.2009.2039181
    [13] KELLY S I, DU C, RILLING G, et al. Advanced image formation and processing of partial synthetic aperture radar data[J]. IET Signal Processing, 2012, 6(5): 511–520. doi: 10.1049/iet-spr.2011.0073
    [14] GÜVEN H E, GÜNGÖR A, and ÇETIN M. An augmented Lagrangian method for complex-valued compressed SAR imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 235–250. doi: 10.1109/TCI.2016.2580498
    [15] YANG Jungang, THOMPSON J, HUANG Xiaotao, et al. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4214–4225. doi: 10.1109/TGRS.2012.2227060
    [16] FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi: 10.1109/JSTARS.2013.2263309
    [17] BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3426–3440. doi: 10.1109/TGRS.2017.2671519
    [18] BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. Azimuth-range decouple-based L1 regularization method for wide ScanSAR imaging via extended chirp scaling[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015007. doi: 10.1117/1.JRS.11.015007
    [19] BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. Extended chirp scaling-baseband azimuth scaling-based azimuth-range decouple L1 regularization for TOPS SAR imaging via CAMP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3748–3763. doi: 10.1109/TGRS.2017.2679129
    [20] BI Hui, ZHANG Bingchen, WANG Zhengdao, et al. Lq regularisation-based synthetic aperture radar image feature enhancement via iterative thresholding algorithm[J]. Electronics Letters, 2016, 52(15): 1336–1338. doi: 10.1049/el.2016.1168
    [21] BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802
    [22] 姚天宇. 长征四号丙运载火箭成功发射高分三号卫星[J]. 中国航天, 2016(8): 8.

    YAO Tianyu. The ChangZheng-4C carrier rocket successfully launched the GaoFen-3 satellite[J]. Aerospace China, 2016(8): 8.
    [23] BI Hui and BI Guoan. A novel iterative soft thresholding algorithm for L1 regularization based SAR image enhancement[J]. Science China Information Sciences, 2019, 62(4): 49303. doi: 10.1007/s11432-018-9662-y
    [24] ÇETIN M, KARL W C, and CASTAÑON D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375–1395. doi: 10.1109/TAES.2003.1261134
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4591
  • HTML全文浏览量:  1397
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2020-01-12
  • 网络出版日期:  2020-02-28

目录

    /

    返回文章
    返回