基于FBMC信号的低截获雷达通信一体化波形设计

李琬璐 相征 任鹏

李琬璐, 相征, 任鹏. 基于FBMC信号的低截获雷达通信一体化波形设计[J]. 雷达学报, 2023, 12(2): 287–296. doi: 10.12000/JR22064
引用本文: 李琬璐, 相征, 任鹏. 基于FBMC信号的低截获雷达通信一体化波形设计[J]. 雷达学报, 2023, 12(2): 287–296. doi: 10.12000/JR22064
LI Wanlu, XIANG Zheng, and REN Peng. Filter bank multi-carrier waveform design for low probability of intercepting joint radar and communication system[J]. Journal of Radars, 2023, 12(2): 287–296. doi: 10.12000/JR22064
Citation: LI Wanlu, XIANG Zheng, and REN Peng. Filter bank multi-carrier waveform design for low probability of intercepting joint radar and communication system[J]. Journal of Radars, 2023, 12(2): 287–296. doi: 10.12000/JR22064

基于FBMC信号的低截获雷达通信一体化波形设计

DOI: 10.12000/JR22064
基金项目: 国家自然科学基金(61971320)
详细信息
    作者简介:

    李琬璐,博士生,主要研究方向为雷达通信一体化的系统设计和信号处理

    相 征,博士,教授,主要研究方向为研究方向为感知通信一体化、自组织网络与空天地一体化

    任 鹏,副教授,主要研究方向为感知通信一体化、信道编码、数据链

    通讯作者:

    任鹏 rp1816@126.com

  • 责任主编:原进宏 Corresponding Editor: YUAN Jinhong
  • 中图分类号: TN957

Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System

Funds: The National Natural Science Foundation of China (61971320)
More Information
  • 摘要: 针对正交频分复用(OFDM)雷达通信一体化波形方案中循环前缀引起的弱回波掩盖问题和敌方战场低截获概率问题,该文提出了基于滤波器组的多载波偏移正交幅度调制(FBMC-OQAM)的低截获雷达通信一体化波形设计方案。分别构建FBMC雷达通信一体化波形与目标检测概率、通信信道容量之间的数学模型,在保证一定系统雷达与通信性能的条件约束下,设计最小化系统总发射功率联合优化问题,优化各个子载波发射功率分配方案。该算法利用测量值和信道状态信息,对下一个脉冲的发射波形参数进行优化设计,实现自适应传输。此外,从平均模糊函数角度分析了FBMC作为雷达信号的可行性和优势。仿真结果表明,与等功率分配方案相比,该文提出的功率分配方案可有效降低一体化系统总发射功率,从而实现低截获性能,并且FBMC波形可有效降低循环前缀引起的距离旁瓣,提高雷达分辨率与信息速率。

     

  • 图  1  FBMC-OQAM信号模型

    Figure  1.  FBMC-OQAM signal model

    图  2  检测概率随非中心参数变化情况

    Figure  2.  Radar detection probability versus non-central parameter

    图  3  OFDM模糊函数、零多普勒图及其零时延图

    Figure  3.  AAF of OFDM waveform and its zero-Doppler and zero-delay cut

    图  4  CP-OFDM模糊函数、零多普勒图及其零时延图

    Figure  4.  AAF of CP-OFDM waveform and its zero-Doppler and zero-delay cut

    图  5  FBMC-OQAM模糊函数、零多普勒图及其零时延图

    Figure  5.  AAF of FBMC-OQAM waveform and its zero-Doppler and zero-delay cut

    图  6  场景1中发射总功率随检测概率变化情况

    Figure  6.  Total power versus probability of detection in scenario I

    图  7  场景2中发射总功率随检测概率变化情况

    Figure  7.  Total power versus probability of detection in scenario II

    图  8  不同方案发射总功率随检测概率变化情况

    Figure  8.  Total power versus probability of detection in different scheme

    图  9  不同方案发射总功率随信道容量变化情况

    Figure  9.  Total power versus channel capacity in different scheme

    表  1  多载波波形仿真参数设置

    Table  1.   Multi-Carrier waveform parameters setting

    波形符号
    周期
    子载
    波数
    CP长度符号
    调制方式滤波器
    OFDM1.65 μs640416QAM矩形窗
    CP-OFDM2.07 μs800.42 μs416QAM矩形窗
    FBMC-OQAM0.83 μs640416QAMPHDYAS K=4
    下载: 导出CSV

    表  2  PHDYAS滤波器系数

    Table  2.   PHDYAS filter coefficients

    参数数值参数数值
    K4${H_1}$0.971960
    ${H_0}$1${H_2}$$\sqrt 2 /2$
    ${H_3}$0.235147
    下载: 导出CSV

    表  3  参数${\boldsymbol{\lambda }}$${\boldsymbol{\eta }}$仿真参数设置

    Table  3.   ${\boldsymbol{\lambda }}$ and ${\boldsymbol{\eta }}$ parameters setting

    参数子信道1子信道2子信道3子信道4
    场景1$ {\boldsymbol{\lambda }} $–0.1369–0.0619i0.3611+0.2125i0.0075–0.0921i0.2667–0.2076i
    场景1${\boldsymbol{\eta }}$–0.046+0.1705i0.0304+0.1136i0.0609+0.2273i0.1218–0.4546i
    场景2$ {\boldsymbol{\lambda }} $0.6288–0.1170i0.1064+0.0408i0.0617+0.0590i0.0449+0.1549i
    场景2${\boldsymbol{\eta }}$0.5520+0.1479i0.0370–0.1380i0.2070+0.0055i0.0018–0.0690i
    下载: 导出CSV
  • [1] CALDWELL D, FREDA J, and GOLDSTEIN L J. China maritime report No. 5: China’s dreadnought? The PLA Navy’s type 055 cruiser and its implications for the future maritime security environment[R]. CMSI China Maritime Reports. 5, 2020.
    [2] MCCASLIN I B and ERICKSON A S. The Impact of Xi-Era Reforms on the Chinese Navy[M]. SAUNDERS P C, DING A S, SCOBELL A, et al. Chairman Xi Remakes the PLA: Assessing Chinese Military Reforms. Washington: National Defense University Press, 2018.
    [3] MCMAHON B, LAPIERRE R, MACCABE A, et al. ORCHESTRA: Optimizable RF converged hardware expression of a scalable transmit/receive architecture[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 2139–2140.
    [4] MENZEL W. Millimeter-wave radar for civil applications[C]. The 7th European Radar Conference, Paris, France, 2010: 89–92.
    [5] ERDELJ M, NATALIZIO E, CHOWDHURY K R, et al. Help from the sky: Leveraging UAVs for disaster management[J]. IEEE Pervasive Computing, 2017, 16(1): 24–32. doi: 10.1109/MPRV.2017.11
    [6] YANG Chouchang and SHAO Huairong. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150–157. doi: 10.1109/MCOM.2015.7060497
    [7] MISHRA K V, SHANKAR M R B, KOIVUNEN V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100–114. doi: 10.1109/MSP.2019.2913173
    [8] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint Radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radar, 2022, 11(2): 198–212. doi: 10.12000/JR21146
    [9] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: overview and prospect[J]. Journal of Radar, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [10] ZHANG Qiuyue, ZHOU Yu, ZHANG Linrang, et al. Circulating code array for a dual-function radar-communications system[J]. IEEE Sensors Journal, 2020, 20(2): 786–798. doi: 10.1109/JSEN.2019.2944470
    [11] BEKAR M, BAKER C J, HOARE E G, et al. Joint MIMO Radar and communication system using a PSK-LFM waveform With TDM and CDM approaches[J]. IEEE Sensors Journal, 2021, 21(5): 6115–6124. doi: 10.1109/JSEN.2020.3043085
    [12] 杨慧婷, 周宇, 谷亚彬, 等. 参数调制多载波雷达通信共享信号设计[J]. 雷达学报, 2019, 8(1): 54–63. doi: 10.12000/JR18001

    YANG Huiting, ZHOU Yu, GU Yabin, et al. Design of integrated Radar and communication signal based on multicarrier parameter modulation signal[J]. Journal of Radar, 2019, 8(1): 54–63. doi: 10.12000/JR18001
    [13] LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
    [14] MOZESON E and LEVANON N. Multicarrier radar signals with low peak-to-mean envelope power ratio[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(2): 71–77. doi: 10.1049/ip-rsn:20030263
    [15] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [16] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [17] FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92–112. doi: 10.1109/MSP.2011.940267
    [18] PACE P E. Detecting and Classifying Low Probability of Intercept Radar[M]. 2nd ed. Norwood: Artech House, 2009: 231–245.
    [19] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept-based optimal power allocation scheme for an integrated multistatic radar and communication system[J]. IEEE Systems Journal, 2020, 14(1): 983–994. doi: 10.1109/JSYST.2019.2931754
    [20] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept based multicarrier radar jamming power allocation for joint radar and wireless communications systems[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 802–811. doi: 10.1049/iet-rsn.2016.0362
    [21] JAMAL H and MATOLAK D W. Dual-polarization FBMC for improved performance in wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 349–358. doi: 10.1109/TVT.2018.2879573
    [22] MADHOW U. Fundamentals of Digital Communication[M]. Cambridge: Cambridge University Press, 2008: 213–243.
    [23] KNOTT E F, SHAEFFER J F, and TULEY M T. Radar Cross Section[M]. 2nd ed. SciTech Publishing, 2004: 23–45.
    [24] SEN S, TANG Gongguo, and NEHORAI A. Multiobjective optimization of OFDM radar waveform for target detection[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 639–652. doi: 10.1109/TSP.2010.2089628
    [25] KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs: Prentice-Hall, 1993: 125–132.
    [26] LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons, 2004: 211–232.
    [27] AUSLANDER L and TOLIMIERI R. Characterizing the radar ambiguity functions[J]. IEEE Transactions on Information Theory, 1984, 30(6): 832–836. doi: 10.1109/TIT.1984.1056980
    [28] SKOLNIK M I. Introduction to Radar Systems[M]. New York: McGraw-Hill, 1980.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1126
  • HTML全文浏览量:  875
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-06-12
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回