复合高斯杂波下抑制失配信号的自适应检测器

许述文 石星宇 水鹏朗

许述文, 石星宇, 水鹏朗. 复合高斯杂波下抑制失配信号的自适应检测器[J]. 雷达学报, 2019, 8(3): 326–334. doi: 10.12000/JR19030
引用本文: 许述文, 石星宇, 水鹏朗. 复合高斯杂波下抑制失配信号的自适应检测器[J]. 雷达学报, 2019, 8(3): 326–334. doi: 10.12000/JR19030
XU Shuwen, SHI Xingyu, and SHUI Penglang. An adaptive detector with mismatched signals rejection in compound Gaussian clutter[J]. Journal of Radars, 2019, 8(3): 326–334. doi: 10.12000/JR19030
Citation: XU Shuwen, SHI Xingyu, and SHUI Penglang. An adaptive detector with mismatched signals rejection in compound Gaussian clutter [J]. Journal of Radars, 2019, 8(3): 326–334. doi: 10.12000/JR19030

复合高斯杂波下抑制失配信号的自适应检测器

DOI: 10.12000/JR19030
基金项目: 国家自然科学基金(61871303),电波环境特性及模化技术重点实验室基金(6142403180204),陕西省自然科学基础研究计划(2017JM6031),陕西省科协青年人才托举计划(20160205),高等学校学科创新引智计划(111计划)(B18039)
详细信息
    作者简介:

    许述文(1985–),男,安徽黄山人,博士,副教授。2011年在西安电子科技大学获得博士学位,现担任西安电子科技大学电子工程学院雷达信号处理国家重点实验室副教授、硕导、博导。主要研究方向为雷达目标检测、机器学习、时频分析和SAR图像处理。E-mail: swxu@mail.xidian.edu.cn

    石星宇(1994–),男,甘肃民乐人,2016年在西安电子科技大学获得学士学位,现在西安电子科技大学雷达信号处理国家重点实验室攻读硕士学位,研究方向为信号检测与参数估计、海杂波信号处理。E-mail: xyshi@stu.xidian.edu.cn

    水鹏朗(1967–),男,陕西西安人,博士,教授。1999年在西安电子科技大学获得博士学位,现担任西安电子科技大学电子工程学院雷达信号处理国家重点实验室教授、硕导、博导。主要研究方向为海杂波建模、雷达目标检测和图像处理。E-mail: plshui@xidian.edu.cn

    通讯作者:

    许述文 swxu@mail.xidian.edu.cn

  • 中图分类号: TN957.51

An Adaptive Detector with Mismatched Signals Rejection in Compound Gaussian Clutter

Funds: The National Natural Science Foundation of China (61871303), The Foundation of National Key Laboratory of Electromagnetic Environment (6142403180204), The Natural Science Basic Research Plan in Shaanxi Province of China (2017JM6031), Young Talent Fund of University Association for Science and Technology in Shaanxi (20160205), Foreign Scholars in University Research and Teaching Programs (the 111 Project) (B18039)
More Information
  • 摘要: 随着雷达分辨率的提高及擦地角的减小,海杂波幅度分布明显偏离瑞利分布,表现出很强的非高斯特性,复合高斯模型得到广泛应用。因此该文以复合高斯杂波为背景,研究当信号发生失配时的雷达目标检测问题。该文基于两步广义似然比(GLRT)检验,设计了复合高斯杂波下对失配信号具有选择性的自适应检测器。为了设计选择性检测器,在零假设下引入虚假干扰以修正原始二元假设,并假设该虚假干扰与实际目标信号在白化空间正交。该文提出的检测器对海杂波纹理分量及协方差矩阵恒虚警(CFAR)。最后利用仿真及实测海杂波数据,通过蒙特卡洛实验验证该检测器的有效性。实验表明,该文所提检测器有效提高了对失配信号的选择性,同时对距离扩展目标匹配信号的检测性能也有1~3 dB的提升。

     

  • 图  1  本文所提检测器在不同$\nu ,b,\rho $下的检测门限(H=4, K=32)

    Figure  1.  Detection threshold of the proposed detector under different $\nu ,\;b\;{\rm and}\;\rho $ (H=4, K=32).

    图  2  不同检测器对匹配信号的检测性能曲线(N=8, H=1, K=32, ${\cos ^2}\theta = 1$, b=1.0, $\nu $=1.5)

    Figure  2.  Detection performance curve of different detectors for matched signal (N=8, H=1, K=32, ${\cos ^2}\theta = 1$, b=1.0, $\nu $=1.5)

    图  3  不同检测器对匹配信号的检测性能曲线(N=8, H=4, K=32, ${\cos ^2}\theta = 1$, b=1.0, $\nu $=1.5).

    Figure  3.  Detection performance curve of different detectors for matched signal (N=8, H=4, K=32, ${\cos ^2}\theta = 1$, b=1.0, $\nu $=1.5)

    图  4  不同检测器检测概率随${\cos ^2}\theta $的变化曲线(N=8, H=1, K=32, SCR=5 dB, b=1.0, $\nu $=1.5)

    Figure  4.  Detection probability of different detectors versus ${\cos ^2}\theta $ (N=8, H=1, K=32, SCR=5 dB, b=1.0, $\nu $=1.5)

    图  5  不同检测器检测概率随${\cos ^2}\theta $的变化曲线(N=8, H=4, K=32, SCR=0 dB, b=1.0, $\nu $=1.5)

    Figure  5.  Detection probability of different detectors versus ${\cos ^2}\theta $ (N=8, H=4, K=32, SCR=0 dB, b=1.0, $\nu $=1.5)

    图  6  实测数据幅度分布拟合曲线

    Figure  6.  Amplitude probability density function fitting of the measured data

    图  7  实测数据下不同检测器对匹配信号的检测性能曲线(N=8, H=4, K=24)

    Figure  7.  Detection performance curve of different detectors for matched signal under measured data (N=8, H=4, K=24)

    图  8  实测数据下不同检测器检测概率随${\cos ^2}\theta $的变化曲线(N=8, H=4, K=24, SCR=0 dB)

    Figure  8.  Detection probability of different detectors versus ${\cos ^2}\theta $ under measured data (N=8, H=4, K=24, SCR=0 dB)

  • [1] KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [2] ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [3] DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
    [4] CONTE E, DE MAIO A, and RICCI G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336–1348. doi: 10.1109/78.928688
    [5] GINI F and GRECO M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(3): 115–124. doi: 10.1049/ip-rsn:20020272
    [6] SANGSTON K J, GINI F, GRECO M V, et al. Structures for radar detection in compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 445–458. doi: 10.1109/7.766928
    [7] XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture[J]. Digital Signal Processing, 2016, 56: 132–139. doi: 10.1016/j.dsp.2016.06.009
    [8] SHANG Xiuqin, SONG Hongjun, WANG Yu, et al. Adaptive detection of distributed targets in compound-Gaussian clutter with inverse gamma texture[J]. Digital Signal Processing, 2012, 22(6): 1024–1030. doi: 10.1016/j.dsp.2012.05.002
    [9] SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621
    [10] DONG Y. Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 283–292. doi: 10.1049/iet-rsn.2011.0273
    [11] SHUI Penglang, LIU Ming, and XU Shuwen. Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. doi: 10.1109/TAES.2015.140109
    [12] PULSONE N B and RADER C M. Adaptive beamformer orthogonal rejection test[J]. IEEE Transactions on Signal Processing, 2001, 49(3): 521–529. doi: 10.1109/78.905870
    [13] BANDIERA F, BESSON O, and RICCI G. An ABORT-like detector with improved mismatched signals rejection capabilities[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 14–25. doi: 10.1109/TSP.2007.906690
    [14] LIU Weijian, LIU Jun, DU Qinglei, et al. Distributed target detection in partially homogeneous environment when signal mismatch occurs[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3918–3928. doi: 10.1109/TSP.2018.2841860
    [15] RANGASWAMY M, WEINER D D, and OZTURK A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. doi: 10.1109/7.249117
    [16] YAO K. A representation theorem and its applications to spherically-invariant random processes[J]. IEEE Transactions on Information Theory, 1973, 19(5): 600–608. doi: 10.1109/TIT.1973.1055076
    [17] RICHMOND C D. Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1248–1262. doi: 10.1109/78.839973
    [18] RICHMOND C D. Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263–1273. doi: 10.1109/78.839974
    [19] CONTE E and DE MAIO A. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 284–302. doi: 10.1109/JOE.2004.826901
    [20] CONTE E, LOPS M, and RICCI G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248–250. doi: 10.1109/97.511809
  • 加载中
图(8)
计量
  • 文章访问数:  2385
  • HTML全文浏览量:  890
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-05-05
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回