基于特征博弈预处理的多径抑制与高精度测角方法

项厚宏 王永良 李雨曦 陈毓锋 王凤玉 曾小路

陈伟, 万显荣, 张勋, 饶云华, 程丰. 外辐射源雷达多通道时域杂波抑制算法并行实现[J]. 雷达学报, 2014, 3(6): 686-693. doi: 10.12000/JR14157
引用本文: 项厚宏, 王永良, 李雨曦, 等. 基于特征博弈预处理的多径抑制与高精度测角方法[J]. 雷达学报(中英文), 2025, 14(2): 269–279. doi: 10.12000/JR24215
Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
Citation: XIANG Houhong, WANG Yongliang, LI Yuxi, et al. Multipath suppression and high-precision angle measurement method based on feature game preprocessing[J]. Journal of Radars, 2025, 14(2): 269–279. doi: 10.12000/JR24215

基于特征博弈预处理的多径抑制与高精度测角方法

DOI: 10.12000/JR24215 CSTR: 32380.14.JR24215
基金项目: 国家自然科学基金(62201189),安徽省重大基础研究项目(2023z04020018),西安电子科技大学杭州研究院院士工作站基金(XH-KY-202306-0285),中央高校基本科研业务费专项资金(JZ2024HGTB0228)
详细信息
    作者简介:

    项厚宏,博士,讲师,硕士生导师,主要研究方向为智能雷达信号处理、阵列信号处理等

    王永良,博士,教授,博士生导师,主要研究方向为雷达信号处理、空时信号处理、阵列信号处理等

    李雨曦,本科生,主要研究方向为智能参数估计等

    陈毓锋,博士,副研究员,主要研究方向为雷达通信一体化、阵列信号处理等

    王凤玉,博士,讲师,主要研究方向为智能信号处理、阵列信号处理等

    曾小路,博士,副研究员,主要研究方向为穿墙雷达静止目标成像、智能无线感知与物联网技术

    通讯作者:

    项厚宏 hhxiang@hfut.edu.cn

    王永良 ylwangkjld@163.com

  • 责任主编:陈伯孝 Corresponding Editor: CHEN Baixiao
  • 中图分类号: TN958

Multipath Suppression and High-precision Angle Measurement Method Based on Feature Game Preprocessing

Funds: The National Natural Science Foundation of China (62201189), Key Fundamental Research Program of Anhui Province (2023z04020018), The Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University (XH-KY-202306-0285), The Fundamental Research Funds for the Central University (JZ2024HGTB0228)
More Information
  • 摘要: 米波雷达波束较宽,探测低仰角目标时多径信号严重影响直达信号的显著性,低仰角测角性能较差。针对此问题,该文提出了一种信号级特征博弈的多径抑制与高精度测角方法,构建一组直达信号提取器和直达信号特征检验器,直达信号提取器挖掘出多径信号湮没的直达信号,直达信号特征检验器用于鉴别、分析提取的直达信号的有效性,直达信号提取器和直达信号特征检验器相互博弈、优化,有效实现直达信号增强和多径信号抑制的效果,并利用已有的超分辨算法进行波达方向估计(DOA)。计算机仿真结果表明,所提算法不依赖于严格的目标角度信息,能够有效抑制多径信号,经典的超分辨算法在多种场景下的估计性能显著提升,且较已有的有监督学习模型而言,所提算法对未知的信号参数及多径分布模型具有更好的泛化性。

     

  • 图  1  多径信号模型

    Figure  1.  Multipath signal model

    图  2  特征博弈预处理的多径抑制方法框图

    Figure  2.  A block diagram of multipath suppression method using feature game preprocessing

    图  3  特征博弈预处理前后数据相位分布分析

    Figure  3.  Phase distribution analysis of data before and after feature game preprocessing

    图  4  特征博弈预处理前后数据空间谱分析

    Figure  4.  Spatial spectrum analysis of data before and after feature game preprocessing

    图  5  不同信噪比条件下测角误差分布和均方根误差对比

    Figure  5.  Error distribution of DOA estimation and root mean square error comparison under different SNR conditions

    图  6  测角均方根误差与快拍数关系曲线

    Figure  6.  The relationship curve between root mean square error of direction of arrival estimation and number of snapshots

    图  7  特征博弈预处理方法泛化性分析

    Figure  7.  Generalization analysis of feature game preprocessing method

    图  8  模型失配条件下的测角性能分析

    Figure  8.  Analysis of DOA estimation performance under model mismatch conditions

  • [1] 吴剑旗. 先进米波雷达[M]. 北京: 国防工业出版社, 2015: 294.

    WU Jianqi. Advanced Metric Wave Radar[M]. Beijing: National Defense Industry Press, 2015: 294.
    [2] WU Jianqi, ZHU Wei, and CHEN Baixiao. Compressed sensing techniques for altitude estimation in multipath conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1891–1900. doi: 10.1109/TAES.2015.130841.
    [3] 王鸿帧, 郑桂妹, 陈晨, 等. 米波雷达低仰角估计技术分析与展望[J]. 火力与指挥控制, 2023, 48(11): 6–16. doi: 10.3969/j.issn.1002-0640.2023.11.002.

    WANG Hongzhen, ZHENG Guimei, CHEN Chen, et al. Analysis and prospect of low elevation estimation technology for meter wave radar[J]. Fire Control & Command Control, 2023, 48(11): 6–16. doi: 10.3969/j.issn.1002-0640.2023.11.002.
    [4] 郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013.

    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013.
    [5] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [6] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
    [7] ZISKIND I and WAX M. Maximum likelihood localization of diversely polarized sources by simulated annealing[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(7): 1111–1114. doi: 10.1109/8.55625.
    [8] LE JEUNE D, JARRY P, SALAUN A, et al. Performance evaluation of Marple modified FBLP and MINNORM methods for angle of arrival estimation using real multipath active sonar data[C]. The Fifth ASSP Workshop on Spectrum Estimation and Modeling, Rochester, USA, 1990: 352–356. doi: 10.1109/SPECT.1990.205606.
    [9] PAN Jingjing, SUN Meng, WANG Yide, et al. Simplified spatial smoothing for DOA estimation of coherent signals[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(2): 841–845. doi: 10.1109/TCSII.2022.3214321.
    [10] ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543.
    [11] 项厚宏. 基于深度学习的米波雷达阵列超分辨DOA估计方法研究[D]. [博士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.000059.

    XIANG Houhong. Study on super-resolution DOA estimation methods based on deep learning for VHF radar[D]. [Ph.D. dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.000059.
    [12] 李存勖. 米波雷达低仰角测高相关问题研究[D]. [博士论文], 西安电子科技大学, 2018.

    LI Cunxu. Study on some issues of altitude measurement of low-angle target for VHF array radar[D]. [Ph.D. dissertation], Xidian University, 2018.
    [13] 朱伟. 米波数字阵列雷达低仰角测高方法研究[D]. [博士论文], 西安电子科技大学, 2013.

    ZHU Wei. Study on low-angle altitude measurement in VHF radar[D]. [Ph.D. dissertation], Xidian University, 2013.
    [14] 李妙歌, 陈渤, 王东升, 等. 面向SAR图像目标分类的CNN模型可视化方法[J]. 雷达学报(中英文), 2024, 13(2): 359–373. doi: 10.12000/JR23107.

    LI Miaoge, CHEN Bo, WANG Dongsheng, et al. CNN model visualization method for SAR image target classification[J]. Journal of Radars, 2024, 13(2): 359–373. doi: 10.12000/JR23107.
    [15] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049.

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049.
    [16] 牟效乾, 陈小龙, 关键, 等. 基于INet的雷达图像杂波抑制和目标检测方法[J]. 雷达学报, 2020, 9(4): 640–653. doi: 10.12000/JR20090.

    MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, et al. Clutter suppression and marine target detection for radar images based on INet[J]. Journal of Radars, 2020, 9(4): 640–653. doi: 10.12000/JR20090.
    [17] XU Xiaoxuan and HUANG Qinghua. MD-DOA: A model-based deep learning DOA estimation architecture[J]. IEEE Sensors Journal, 2024, 24(12): 20240–20253. doi: 10.1109/JSEN.2024.3396337.
    [18] LABBAF N, DALILI OSKOUEI H R, and ABEDI M R. Robust DOA estimation in a uniform circular array antenna with errors and unknown parameters using deep learning[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 2143–2152. doi: 10.1109/TGCN.2023.3294448.
    [19] YU Jiarun and WANG Yafeng. Deep learning-based multipath DoAs estimation method for mmWave massive MIMO systems in low SNR[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7480–7490. doi: 10.1109/TVT.2023.3239402.
    [20] LIU Zhangmeng, ZHANG Chenwei, and YU P S. Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7315–7327. doi: 10.1109/TAP.2018.2874430.
    [21] WU Liuli and HUANG Zhitao. Coherent SVR learning for wideband direction-of-arrival estimation[J]. IEEE Signal Processing Letters, 2019, 26(4): 642–646. doi: 10.1109/LSP.2019.2901641.
  • 期刊类型引用(10)

    1. 管浩良,张广滨,王岩. 融合特征金字塔和自注意力机制的SAR三维点云目标识别方法. 信号处理. 2025(01): 70-83 . 百度学术
    2. 李雨轩,刘峥,冉磊. 一种改进的SAR图像舰船目标超像素快速检测算法. 信号处理. 2025(01): 113-126 . 百度学术
    3. 王佳慧,杨果,王雨晗,毛新华. 基于MSER的车载毫米波雷达SAR图像目标检测. 现代雷达. 2025(01): 1-7 . 百度学术
    4. 张强,王志豪,王学谦,李刚,黄立威,宋慧娜,宋朝晖. 基于邻域显著性的可见光和SAR遥感图像海面舰船协同检测方法. 雷达学报. 2024(04): 885-903 . 本站查看
    5. 何佳月,宿南,徐从安,尹璐,廖艳苹,闫奕名. 从光学到SAR:基于多级跨模态对齐的SAR图像舰船检测算法. 遥感学报. 2024(07): 1789-1801 . 百度学术
    6. 李家强,任梦豪,姚昌华,陈金立. 基于轻量化YOLOv5的雷达图像道路目标检测方法. 中国电子科学研究院学报. 2024(05): 393-402 . 百度学术
    7. 胡卫杰,刘颖冰,马飞,张帆. 基于无损压缩和量化感知的SAR舰船检测网络边缘部署. 信号处理. 2024(09): 1674-1684 . 百度学术
    8. 王磊,张斌,吴奇鸿. RCSA-YOLO:改进YOLOv8的SAR舰船实例分割. 计算机工程与应用. 2024(18): 103-113 . 百度学术
    9. 包立男,吕孝雷. 基于改进的高斯混合模型和图割模型的水体图像提取算法. 中国科学院大学学报(中英文). 2024(06): 794-802 . 百度学术
    10. 刘林峰,胡清平,马丽衡,张晓晖. 一种提高可见光遥感图像黑极性舰船目标检出率的方法. 光学与光电技术. 2023(04): 59-66 . 百度学术

    其他类型引用(12)

  • 加载中
图(8)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2024-10-27
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-01-20
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回