| Citation: | ZENG Guobing, XU Huaping, WANG Yuan, et al. Demonstration of spaceborne multi-static SAR tomography and forest height estimation[J]. Journal of Radars, 2026, 15(1): 107–119. doi: 10.12000/JR25269 |
| [1] |
PAN Yude, BIRDSEY R A, FANG Jingyun, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988–993. doi: 10.1126/science.1201609.
|
| [2] |
PAN Yude, BIRDSEY R A, PHILLIPS O L, et al. The enduring world forest carbon sink[J]. Nature, 2024, 631(8021): 563–569. doi: 10.1038/s41586-024-07602-x.
|
| [3] |
DUBAYAH R, ARMSTON J, HEALEY S P, et al. GEDI launches a new era of biomass inference from space[J]. Environmental Research Letters, 2022, 17(9): 095001. doi: 10.1088/1748-9326/ac8694.
|
| [4] |
DUNCANSON L, KELLNER J R, ARMSTON J, et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar mission[J]. Remote Sensing of Environment, 2022, 270: 112845. doi: 10.1016/j.rse.2021.112845.
|
| [5] |
SCHUTZ B E, ZWALLY H J, SHUMAN C A, et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 2005, 32(21): L21S01. doi: 10.1029/2005GL024009.
|
| [6] |
ABDALATI W, ZWALLY H J, BINDSCHADLER R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5): 735–751. doi: 10.1109/JPROC.2009.2034765.
|
| [7] |
李震, 张平, 乔海伟, 等. 层析SAR地表参数信息提取研究进展[J]. 雷达学报, 2021, 10(1): 116–130. doi: 10.12000/JR20095.
LI Zhen, ZHANG Ping, QIAO Haiwei, et al. Advances in information extraction of surface parameters using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116–130. doi: 10.12000/JR20095.
|
| [8] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
|
| [9] |
LE TOAN T, QUEGAN S, DAVIDSON M W J, et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11): 2850–2860. doi: 10.1016/j.rse.2011.03.020.
|
| [10] |
QUEGAN S, LE TOAN T, CHAVE J, et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space[J]. Remote Sensing of Environment, 2019, 227: 44–60. doi: 10.1016/j.rse.2019.03.032.
|
| [11] |
HAJNSEK I, SCHEIBER R, KELLER M, et al. BIOSAR 2008: Final report[R]. 22052/08/NL/CT-002, 2009.
|
| [12] |
DUBOIS-FERNANDEZ P C, LE TOAN T, DANIEL S, et al. The TropiSAR airborne campaign in French Guiana: Objectives, description, and observed temporal behavior of the backscatter signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3228–3241. doi: 10.1109/TGRS.2011.2180728.
|
| [13] |
HAJNSEK I, PARDINI M, HORN R, et al. SAR imaging of tropical African forests with P-band multibaseline acquisitions: Results from the AfriSAR campaign[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 7521–7523. doi: 10.1109/IGARSS.2016.7730961.
|
| [14] |
HAJNSEK I, PARDINI M, GULIAEV R, et al. Mapping tropical forest in Gabon with L-/P-band multibaseline acquisitions: First results from the GabonX campaign[C]. ESA POLinSAR Workshop, Toulouse, France, 2023.
|
| [15] |
KHATI U, LAVALLE M, and SINGH G. Spaceborne tomography of multi-species Indian tropical forests[J]. Remote Sensing of Environment, 2019, 229: 193–212. doi: 10.1016/j.rse.2019.04.017.
|
| [16] |
AGHABABAEE H, FORNARO G, and SCHIRINZI G. Phase calibration based on phase derivative constrained optimization in multibaseline SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6779–6791. doi: 10.1109/TGRS.2018.2843447.
|
| [17] |
BRCIC R, PARIZZI A, EINEDER M, et al. Estimation and compensation of ionospheric delay for SAR interferometry[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 2908–2911. doi: 10.1109/IGARSS.2010.5652231.
|
| [18] |
MEYER F J. Performance requirements for ionospheric correction of low-frequency SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3694–3702. doi: 10.1109/TGRS.2011.2146786.
|
| [19] |
KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934.
|
| [20] |
TEBALDINI S, MANZONI M, FERRO-FAMIL L, et al. FDM MIMO spaceborne SAR tomography by minimum redundancy wavenumber illumination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5207119. doi: 10.1109/TGRS.2024.3371267.
|
| [21] |
MITTERMAYER J, KRIEGER G, BOJARSKI A, et al. MirrorSAR: An HRWS add-on for single-pass multi-baseline SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5224018. doi: 10.1109/TGRS.2021.3132384.
|
| [22] |
LÓPEZ-DEKKER P, BIGGS J, CHAPRON B, et al. The Harmony mission: End of phase-0 science overview[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 7752–7755. doi: 10.1109/IGARSS47720.2021.9554896.
|
| [23] |
DENG Yunkai, ZHANG Heng, LIU Kaiyu, et al. Hongtu-1: The first spaceborne single-pass multibaseline SAR interferometry mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5202518. doi: 10.1109/TGRS.2024.3523299.
|
| [24] |
ZENG Guobing, XU Huaping, WANG Yuan, et al. A novel method for airborne SAR tomography baseline error correction driven by small baseline interferometric phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5225013. doi: 10.1109/TGRS.2024.3478055.
|
| [25] |
REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873.
|
| [26] |
FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
|
| [27] |
PARDINI M, PAPATHANASSIOU K, BIANCO V, et al. Phase calibration of multibaseline SAR data based on a minimum entropy criterion[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 5198–5201. doi: 10.1109/IGARSS.2012.6352438.
|
| [28] |
TEBALDINI S, ROCCA F, D'ALESSANDRO M M, et al. Phase calibration of airborne tomographic SAR data via phase center double localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1775–1792. doi: 10.1109/TGRS.2015.2488358.
|
| [29] |
KUGLER F, LEE S K, HAJNSEK I, et al. Forest height estimation by means of Pol-InSAR data inversion: The role of the vertical wavenumber[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5294–5311. doi: 10.1109/TGRS.2015.2420996.
|
| [30] |
ZENG Guobing, XU Huaping, WANG Yuan, et al. Separation of ground and volume scattering in multibaseline polarimetric SAR data and its application in DTM and CHM inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5218119. doi: 10.1109/TGRS.2024.3430382.
|
| [31] |
GINI F, LOMBARDINI F, and MONTANARI M. Layover solution in multibaseline SAR interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1344–1356. doi: 10.1109/TAES.2002.1145755.
|
| [32] |
BLAIR J B, RABINE D L, and HOFTON M A. The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3): 115–122. doi: 10.1016/S0924-2716(99)00002-7.
|
| [33] |
CHEN Ang, CHENG Kai, CHEN Yuling, et al. Validating recent global canopy height maps over China’s forests based on UAV lidar data[J]. Remote Sensing of Environment, 2025, 329: 114957. doi: 10.1016/j.rse.2025.114957.
|
| [34] |
NGO Y N, MINH D H T, BAGHDADI N N, et al. Exploring forest vertical structure with TomoSense: GEDI and SAR tomography insights[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4400212. doi: 10.1109/TGRS.2024.3513641.
|