| Citation: | WANG Yidi, WANG Robert, ZHANG Yunjun, et al. The concept and system of very large baseline spaceborne interferometric synthetic aperture radar[J]. Journal of Radars, 2026, 15(1): 1–24. doi: 10.12000/JR25220 |
| [1] |
HOWARD H D, ROBERTS S C, and BRANKIN R. Target detection in SAR imagery by genetic programming[J]. Advances in Engineering Software, 1999, 30(5): 303–311. doi: 10.1016/S0965-9978(98)00093-3.
|
| [2] |
KIRK J C, DARDEN S, MAJUMDER U, et al. Forty years of digital SAR and slow GMTI technology[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 64–69. doi: 10.1109/RADAR.2014.6875556.
|
| [3] |
HENDERSON F M and LEWIS A J. Principles and Applications of Imaging Radar[M]. 3rd ed. John Wiley and Sons, 1998.
|
| [4] |
MATSUOKA M and YAMAZAKI F. Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes[J]. Earthquake Spectra, 2004, 20(3): 975–994. doi: 10.1193/1.1774182.
|
| [5] |
GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763–768. doi: 10.1109/PROC.1974.9516.
|
| [6] |
ZINK M, BACHMANN M, BRAUTIGAM B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8–23. doi: 10.1109/MGRS.2014.2318895.
|
| [7] |
FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. doi: 10.1029/2005RG000183.
|
| [8] |
VAN NATIJNE A L, BOGAARD T A, VAN LEIJEN F J, et al. World-wide InSAR sensitivity index for landslide deformation tracking[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 111: 102829. doi: 10.1016/j.jag.2022.102829.
|
| [9] |
BEKAERT D P S, HANDWERGER A L, AGRAM P, et al. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal[J]. Remote Sensing of Environment, 2020, 249: 111983. doi: 10.1016/j.rse.2020.111983.
|
| [10] |
MACCHIARULO V, MILILLO P, DEJONG M J, et al. Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations[J]. Structural Control and Health Monitoring, 2021, 28(9): e2781. doi: 10.1002/stc.2781.
|
| [11] |
ZEBKER H A and GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993–4999. doi: 10.1029/JB091iB05p04993.
|
| [12] |
MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138–142. doi: 10.1038/364138a0.
|
| [13] |
ZEBKER H A and VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950–959. doi: 10.1109/36.175330.
|
| [14] |
ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. doi: 10.1109/5.838084.
|
| [15] |
ROSEN P A, HENSLEY S, WHEELER K, et al. UAVSAR: A new NASA airborne SAR system for science and technology research[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 8. doi: 10.1109/RADAR.2006.1631770.
|
| [16] |
CHANG Zhanqiang, ZHANG Jianbo, GONG Huili, et al. ‘Maximal effective baseline’ for conventional SAR interferometry[J]. International Journal of Remote Sensing, 2007, 28(24): 5603–5615. doi: 10.1080/01431160701227646.
|
| [17] |
KRIEGER G and MOREIRA A. Spaceborne Interferometric and Multistatic SAR Systems[M]. CHERNIAKOV M. Bistatic Radar: Emerging Technology. Chichester: John Wiley & Sons, Ltd, 2008: 95–158. doi: 10.1002/9780470985755.ch4.
|
| [18] |
KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P, et al. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5): 816–843. doi: 10.1109/JPROC.2009.2038948.
|
| [19] |
KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. doi: 10.1109/TGRS.2007.900693.
|
| [20] |
ROCCA F. Modeling interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3289–3299. doi: 10.1109/TGRS.2007.902286.
|
| [21] |
PARIZZI A, CONG Xiaoying, and EINEDER M. First results from multifrequency interferometry. A comparison of different decorrelation time constants at L, C and X band[C]. Fringe 2009 Workshop, Frascati, Italy, 2009.
|
| [22] |
HORST S, CHRONE J, DEACON S, et al. NASA’s surface deformation and change mission study[C]. 2021 IEEE Aerospace Conference (50100), Big Sky, USA, 2021: 1–19. doi: 10.1109/AERO50100.2021.9438290.
|
| [23] |
KELLNDORFER J, CARTUS O, LAVALLE M, et al. Global seasonal Sentinel-1 interferometric coherence and backscatter data set[J]. Scientific Data, 2022, 9(1): 73. doi: 10.1038/s41597-022-01189-6.
|
| [24] |
HANSSEN R F. Radar Interferometry: Data Interpretation and Error Analysis[M]. Dordrecht: Springer, 2001. doi: 10.1007/0-306-47633-9.
|
| [25] |
RODRIGUEZ E and MARTIN J M. Theory and design of interferometric synthetic aperture radars[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(2): 147–159. doi: 10.1049/ip-f-2.1992.0018.
|
| [26] |
BAMLER R and HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): R1–R54. doi: 10.1088/0266-5611/14/4/001.
|
| [27] |
TREUHAFT R N and SIQUEIRA P R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar[J]. Radio Science, 2000, 35(1): 141–177. doi: 10.1029/1999RS900108.
|
| [28] |
BAMLER R and JUST D. Phase statistics and decorrelation in SAR interferograms[C]. IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 1993: 980–984. doi: 10.1109/IGARSS.1993.322637.
|
| [29] |
BILLINGS S A. Parameter estimation: Principles and problems[J]. Electronics and Power, 1981, 27(5): 413. doi: 10.1049/ep.1981.0202.
|
| [30] |
JOUGHIN I R, WINEBRENNER D P, and PERCIVAL D B. Probability density functions for multilook polarimetric signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 562–574. doi: 10.1109/36.297975.
|
| [31] |
LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017–1028. doi: 10.1109/36.312890.
|
| [32] |
TOUZI R and LOPES A. Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 519–531. doi: 10.1109/36.485128.
|
| [33] |
TURNER II B L, LAMBIN E F, and REENBERG A. The emergence of land change science for global environmental change and sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(52): 20666–20671. doi: 10.1073/pnas.0704119104.
|
| [34] |
WANG Yanzhao, SUN Yonghua, CAO Xuyue, et al. A review of regional and global scale land use/land cover (LULC) mapping products generated from satellite remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 206: 311–334. doi: 10.1016/j.isprsjprs.2023.11.014.
|
| [35] |
KARRA K, KONTGIS C, STATMAN-WEIL Z, et al. Global land use / land cover with Sentinel 2 and deep learning[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4704–4707. doi: 10.1109/IGARSS47720.2021.9553499.
|
| [36] |
ROSEN P A, GURROLA E, SACCO G F, et al. The InSAR scientific computing environment[C]. 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 730–733.
|
| [37] |
FATTAHI H, AGRAM P, and SIMONS M. A network-based enhanced spectral diversity approach for tops time-series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 777–786. doi: 10.1109/TGRS.2016.2614925.
|
| [38] |
PEPE A and LANARI R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2374–2383. doi: 10.1109/TGRS.2006.873207.
|
| [39] |
李楠, 丛琳, 陈重华, 等. 多约束条件分布式InSAR编队构形工程优化方法[J]. 测绘学报, 2022, 51(12): 2440–2447. doi: 10.11947/j.AGCS.2022.20210381.
LI Nan, CONG Lin, CHEN Chonghua, et al. An engineering optimization method for distributed spaceborne InSAR formation configuration based on multiple constraints[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2440–2447. doi: 10.11947/j.AGCS.2022.20210381.
|
| [40] |
李楠, 温俊健, 刘艳阳, 等. L波段差分干涉SAR卫星严格回归轨道优化设计方法[J]. 测绘学报, 2024, 53(10): 1873–1880. doi: 10.11947/j.AGCS.2024.20230250.
LI Nan, WEN Junjian, LIU Yanyang, et al. An strictly-regressive orbit optimization algorithm for L-band differential interferometric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1873–1880. doi: 10.11947/j.AGCS.2024.20230250.
|
| [41] |
SCHWEIGHART S A and SEDWICK R J. High-fidelity linearized J2 model for satellite formation flight[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1073–1080. doi: 10.2514/2.4986.
|
| [42] |
邵凯, 张厚喆, 秦显平, 等. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5): 580–588. doi: 10.11947/j.AGCS.2021.20200415.
SHAO Kai, ZHANG Houzhe, QIN Xianping, et al. Precise absolute and relative orbit determination for distributed InSAR satellite system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580–588. doi: 10.11947/j.AGCS.2021.20200415.
|
| [43] |
邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
|
| [44] |
RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi: 10.1109/TGRS.2011.2157971.
|
| [45] |
SCHAEFER C, HEER C, and LUDWIG M. X-band demonstrator for receive-only frontend with digital beamforming[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
|
| [46] |
WANG Wei, WANG Robert, DENG Yunkai, et al. An improved processing scheme of digital beam-forming in elevation for reducing resource occupation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 309–313. doi: 10.1109/LGRS.2015.2508098.
|
| [47] |
QIU Jinsong, ZHANG Zhimin, WANG Robert, et al. A novel weight generator in real-time processing architecture of DBF-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204915. doi: 10.1109/TGRS.2021.3067882.
|
| [48] |
ZHAO Qingchao, ZHANG Yi, WANG Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619–3632. doi: 10.1109/TGRS.2019.2958863.
|
| [49] |
ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital beamforming synthetic aperture radar (DBSAR): Experiments and performance analysis in support of 16-channel airborne X-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6784–6798. doi: 10.1109/TGRS.2020.3027691.
|
| [50] |
DOERRY A W. SAR processing with non-linear FM chirp waveforms[R]. SAND2006-7729, 2006.
|
| [51] |
ZHANG Yongwei, WANG Wei, WANG Robert, et al. A novel NLFM waveform with low sidelobes based on modified Chebyshev window[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 814–818. doi: 10.1109/LGRS.2019.2930817.
|
| [52] |
JIN Guodong, DENG Yunkai, WANG Robert, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi: 10.1109/TGRS.2019.2904627.
|
| [53] |
JIN Guodong, LIU Kaiyu, DENG Yunkai, et al. Nonlinear frequency modulation signal generator in LT-1[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1570–1574. doi: 10.1109/LGRS.2019.2905359.
|
| [54] |
WANG Wei, WANG Robert, ZHANG Zhimin, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247–251. doi: 10.1109/LGRS.2015.2508102.
|
| [55] |
DENG Yunkai and WANG R. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.
|
| [56] |
WANG Robert, LIU Kaiyu, LIU Dacheng, et al. LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission[J]. IEEE Geoscience and Remote Sensing Magazine, 2025, 13(2): 58–78. doi: 10.1109/MGRS.2024.3478761.
|
| [57] |
LIANG Da, LIU Kaiyu, ZHANG Heng, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5740–5750. doi: 10.1109/TGRS.2020.3024561.
|
| [58] |
吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105.
WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105.
|
| [59] |
LIANG Da, LIU Kaiyu, ZHANG Heng, et al. A high-accuracy synchronization phase-compensation method based on Kalman filter for bistatic synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1722–1726. doi: 10.1109/LGRS.2019.2952475.
|
| [60] |
CAI Yonghua, WANG Robert, YU Weidong, et al. An advanced approach to improve synchronization phase accuracy with compressive sensing for LT-1 bistatic spaceborne SAR[J]. Remote Sensing, 2022, 14(18): 4621. doi: 10.3390/rs14184621.
|
| [61] |
WANG Jili, LI Hongxiang, ZHANG Heng, et al. Demonstration of single-pass spaceborne multi-baseline InSAR result of Hongtu-1 constellation[C]. IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 10881–10884. doi: 10.1109/IGARSS53475.2024.10642742.
|
| [62] |
DENG Yunkai, ZHANG Heng, LIU Kaiyu, et al. Hongtu-1: The first spaceborne single-pass multibaseline SAR interferometry mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5202518. doi: 10.1109/TGRS.2024.3523299.
|
| [63] |
LIANG Da, ZHANG Heng, CAI Yonghua, et al. An advanced phase synchronization scheme based on coherent integration and waveform diversity for bistatic SAR[J]. Remote Sensing, 2021, 13(5): 981. doi: 10.3390/rs13050981.
|
| [64] |
CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613.
|
| [65] |
CAI Yonghua, LI Junfeng, WANG Yachao, et al. Detecting and removing phase jitters for the phase synchronization of LT-1 bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4011705. doi: 10.1109/LGRS.2023.3318125.
|
| [66] |
CHEN Yuesheng, NAN Yijiang, CAI Yonghua, et al. Joint narrowband RFI suppression and phase synchronization signal retrieval for BiSAR via robust principal component analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 17461–17470. doi: 10.1109/JSTARS.2024.3419256.
|
| [67] |
CHEN Yuesheng, CAI Yonghua, NAN Yijiang, et al. An advanced RFI mitigation scheme for phase synchronization of bistatic SAR based on blind source separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5222513. doi: 10.1109/TGRS.2023.3333372.
|
| [68] |
蔡永华. 星载双基多通道SAR时相同步与误差校正技术研究[D]. [博士论文], 中国科学院大学, 2024.
CAI Yonghua. Research on time phase synchronization and error correction technology for spaceborne bistatic multichannel SAR[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2024.
|
| [69] |
BERRADA BABY H, GOLÉ P, and LAVERGNAT J. A model for the tropospheric excess path length of radio waves from surface meteorological measurements[J]. Radio Science, 1988, 23(6): 1023–1038. doi: 10.1029/RS023i006p01023.
|
| [70] |
HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999–2049. doi: 10.1002/qj.3803.
|
| [71] |
YANG Qingyue, ZHANG Yunjun, and WANG R. Heterogeneous InSAR tropospheric correction based on local texture correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203814. doi: 10.1109/TGRS.2024.3356749.
|
| [72] |
GOMBA G, PARIZZI A, DE ZAN F, et al. Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1446–1461. doi: 10.1109/TGRS.2015.2481079.
|
| [73] |
LIANG Cunren, AGRAM P, SIMONS M, et al. Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6755–6773. doi: 10.1109/TGRS.2019.2908494.
|
| [74] |
NING Jiaqi, WANG Robert, WANG Jili, et al. Ionospheric correction of ALOS-2 full-aperture ScanSAR interferometric data for surface deformation measurement in Beijing[J]. The Journal of Engineering, 2019, 2019(19): 5685–5688. doi: 10.1049/joe.2019.0331.
|
| [75] |
LI Shijin, ZHANG Shubi, LI Tao, et al. Modeling the optimal baseline for a spaceborne bistatic SAR system to generate DEMs[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 108. doi: 10.3390/ijgi9020108.
|
| [76] |
HU Fengming, XU Feng, WANG Robert, et al. Conceptual study and performance analysis of TanDEM multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
|
| [77] |
WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216318. doi: 10.1109/TGRS.2021.3121907.
|
| [78] |
江利明, 邵益, 周志伟, 等. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037–1056. doi: 10.11947/j.AGCS.2024.20230440.
JIANG Liming, SHAO Yi, ZHOU Zhiwei, et al. A review of intelligent InSAR data processing: Recent advancements, challenges and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037–1056. doi: 10.11947/j.AGCS.2024.20230440.
|
| [79] |
陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995–1005. doi: 10.11947/j.AGCS.2021.20210235.
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: Fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995–1005. doi: 10.11947/j.AGCS.2021.20210235.
|
| [80] |
LÓPEZ-DEKKER P, BIGGS J, CHAPRON B, et al. The Harmony mission: End of phase-0 science overview[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 7752–7755. doi: 10.1109/IGARSS47720.2021.9554896.
|
| [81] |
唐新明, 李涛, 张祥, 等. L波段差分干涉SAR卫星在轨应用关键参数测试分析[J]. 测绘学报, 2024, 53(10): 1863–1872. doi: 10.11947/j.AGCS.2024.20230240.
TANG Xinming, LI Tao, ZHANG Xiang, et al. In-orbit application parameters test and analysis of L-band differential interferometric SAR satellite constellation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1863–1872. doi: 10.11947/j.AGCS.2024.20230240.
|
| [82] |
许兵, 朱焱, 李志伟, 等. 国产卫星时序InSAR形变监测精度分析[J]. 测绘学报, 2024, 53(10): 1930–1941. doi: 10.11947/j.AGCS.2024.20230572.
XU Bing, ZHU Yan, LI Zhiwei, et al. Analysis of InSAR time-series deformation monitoring accuracy of domestic satellite[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1930–1941. doi: 10.11947/j.AGCS.2024.20230572.
|