| Citation: | CHEN Kun, WEI Shunjun, CAI Xiang, et al. RM operator learning-driven non-line-of-sight 3d imaging method for millimeter wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR25132 |
| [1] |
杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.
YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.
|
| [2] |
丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063.
DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063.
|
| [3] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
|
| [4] |
孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报(中英文), 2024, 13(1): 23–45. doi: 10.12000/JR23134.
KONG Lingjiang, GUO Shisheng, CHEN Jiahui, et al. Overview and prospects of multipath exploitation radar target detection technology[J]. Journal of Radars, 2024, 13(1): 23–45. doi: 10.12000/JR23134.
|
| [5] |
SMITH G E and MOBASSERI B G. Multipath exploitation for radar target classification[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 623–628. doi: 10.1109/RADAR.2012.6212215.
|
| [6] |
RASKAR R and DAVIS J. 5d time-light transport matrix: What can we reason about scene properties?[OL]. https://dspace.mit.edu/bitstream/handle/1721.1/67888/TransientLightReportRaskarDavis.pdf?sequence=1.
|
| [7] |
KIRMANI A, HUTCHISON T, DAVIS J, et al. Looking around the corner using transient imaging[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 159–166. doi: 10.1109/ICCV.2009.5459160.
|
| [8] |
VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature communications, 2012, 3(1): 745. doi: 10.1038/ncomms1747.
|
| [9] |
KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature photonics, 2014, 8(10): 784–790. doi: 10.1038/nphoton.2014.189.
|
| [10] |
YEDIDIA A B, BARADAD M, THRAMPOULIDIS C, et al. Using unknown occluders to recover hidden scenes[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12223–12231. doi: 10.1109/CVPR.2019.01251.
|
| [11] |
LIU Xintong, WANG Jianyu, LI Zhupeng, et al. Non-line-of-sight reconstruction with signal–object collaborative regularization[J]. Light: Science & Applications, 2021, 10(1): 198. doi: 10.1038/s41377-021-00633-3.
|
| [12] |
HAO Mingyang, NING Fangli, WANG Ke et al. Acoustic non-line-of-sight vehicle approaching and leaving detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9979–9991. doi: 10.1109/TITS.2024.3353749.
|
| [13] |
MAEDA T, WANG Yiqin, RASKAR R et al. Thermal non-line-of-sight imaging[C]. 2019 IEEE International Conference on Computational Photography (ICCP), Tokyo, Japan, 2019: 1–11. doi: 10.1109/ICCPHOT.2019.8747343.
|
| [14] |
ZHOU Zimu, YANG Zheng, WU Chenshu et al. WiFi-based indoor line-of-sight identification[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6125–6136. doi: 10.1109/TWC.2015.2448540.
|
| [15] |
PAULI M, GÖTTEL B, SCHERR S, et al. Miniaturized millimeter-wave radar sensor for high-accuracy applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1707–1715. doi: 10.1109/TMTT.2017.2677910.
|
| [16] |
WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542.
|
| [17] |
GUO Shisheng, ZHAO Qingsong, CUI Guolong, et al. Behind corner targets location using small aperture millimeter wave radar in nlos urban environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 460–470. doi: 10.1109/JSTARS.2020.2963924.
|
| [18] |
CHEN Jiahui, ZHANG Yang, GUO Shisheng, et al. Joint estimation of nlos building layout and targets via sparsity-driven approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114513. doi: 10.1109/TGRS.2022.3182429.
|
| [19] |
WEI Shunjun, WEI Jinshan, LIU Xinyuan, et al. Nonline-of-sight 3-D imaging using millimeter-wave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5106518. doi: 10.1109/TGRS.2021.3112579.
|
| [20] |
林雨青, 仇晓兰, 彭凌霄, 等. 基于多径模型的建筑区SAR三维成像中非视距目标重定位方法[J]. 雷达学报(中英文), 2024, 13(4): 777–790. doi: 10.12000/JR24057.
LIN Yuqing, QIU Xiaolan, PENG Lingxiao, et al. Non-line-of-sight target relocation by multipath model in SAR 3D urban area imaging[J]. Journal of Radars, 2024, 13(4): 777–790. doi: 10.12000/JR24057.
|
| [21] |
WEN Yanbo, WEI Shunjun, WEI Jinshan, et al. Non-line-of-sight imaging of hidden moving target using millimeter-wave inverse synthetic aperture radar[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 555–558. doi: 10.1109/IGARSS46834.2022.9883939.
|
| [22] |
TAN Xiaoheng, YANG Zhijun, LI Dong, et al. An efficient range-doppler domain ISAR imaging approach for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2670–2681. doi: 10.1109/TGRS.2019.2953303.
|
| [23] |
邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报(中英文), 2024, 13(1): 1–22. doi: 10.12000/JR23183.
XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183.
|
| [24] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
|
| [25] |
CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596.
|
| [26] |
ÁLVAREZ Y, RODRIGUEZ-VAQUEIRO Y, GONZALEZ-VALDES B, et al. Three-dimensional compressed sensing-based millimeter-wave imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5868–5873. doi: 10.1109/TAP.2015.2481487.
|
| [27] |
BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 128–133. doi: 10.1109/RADAR.2007.374203.
|
| [28] |
ZHU Xiaoxiang and BAMLER R. Tomographic SAR Inversion by L1 -norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117.
|
| [29] |
WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. Sparse reconstruction for SAR imaging based on compressed sensing[J]. Progress in Electromagnetics Research, 2010, 109: 63–81. doi: 10.2528/PIER10080805.
|
| [30] |
LIU Xinyuan, WEI Shunjun, WEI Jinshan, et al. Non-line-of-sight millimeter-wave radar 3-D sparse reconstruct via MSSTV method[C]. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wirele-ss Communications (MAPE), Chengdu, China, 2022: 424–427. doi: 10.1109/MAPE53743.2022.9935195.
|
| [31] |
蔡响, 韦顺军, 文彦博, 等. 基于非视距雷达三维成像的隐藏目标精确重构方法[J]. 雷达学报(中英文), 2024, 13(4): 791–806. doi: 10.12000/JR24060.
CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Precise reconstruction method for hidden targets based on non-line-of-sight radar 3D imaging[J]. Journal of Radars, 2024, 13(4): 791–806. doi: 10.12000/JR24060.
|
| [32] |
CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Bayesian-based 3-D MMW radar imaging of non-line-of-sight environments[C]. 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 2023: 1–3. doi: 10.1109/CSRSWTC60855.2023.10427181.
|
| [33] |
WEN Yanbo, WEI Shunjun, CAI Xiang, et al. NMTCS: Non-line-of-sight sparse reconstruct for hidden motion targets[C]. 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 2023: 1–3. doi: 10.1109/CSRSWTC 60855.2023.10426822.
|
| [34] |
WEN Yanbo, WEI Shunjun, CAI xiang, et al. CMTI: Non-line-of-sight radar imaging for non-cooperative corner motion target[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 179–190. doi: 10.1109/TVT.2024.3398218.
|
| [35] |
WEN Yanbo, WEI Shunjun, CAI xiang, et al. Non-Line-of-Sight sparse aperture ISAR imaging via a novel detail-aware regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5220218. doi: 10.1109/TGRS.2024.3447900.
|
| [36] |
董小舒, 朱伟, 刘羽, 等. 毫米波雷达与视觉融合的车辆目标检测系统[J]. 指挥信息系统与技术, 2021, 12(1): 91–96. doi: 10.15908/j.cnki.cist.2021.01.017.
DONG Xiaoshu, ZHU Wei, LIU Yu, et al. Vehicle object detection system combined of millimeter-wave radar and vision[J]. Command Information System And Technology, 2021, 12(1): 91–96. doi: 10.15908/j.cnki.cist.2021.01.017.
|
| [37] |
张春杰, 陈奇, 赵佳琦. 基于注意力机制CNN-LSTM的毫米波雷达点云特征数据预测生成[J]. 电讯技术, 2024, 64(11): 1718–1725. doi: 10.20079/j.issn.1001-893x.240118005.
ZHANG Chunjie, CHEN Qi and ZHAO Jiaqi. Enhancement of mmwave radar point cloud feature data based on self-attention echanism CNN-LSTM[J]. Telecommunication Engineering, 2024, 64(11): 1718–1725. doi: 10.20079/j.issn.1001-893x.240118005.
|
| [38] |
GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 399–406.
|
| [39] |
LIU Risheng, ZHANG Yuxi, CHENG Shichao, et al. A deep framework assembling principled modules for CS-MRI: Unrolling perspective, convergence behaviors, and practical modeling[J]. IEEE Transactions on Medical Imaging, 2020, 39(12): 4150–4163. doi: 10.1109/TMI.2020.3014193.
|
| [40] |
王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维SAR成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101.
WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101.
|
| [41] |
WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
|
| [42] |
WANG Mou, WEI Shunjun, ZHOU Zichen, et al. CTV-Net: Complex-valued TV-driven network with nested topology for 3-D SAR imaging[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5588–5602. doi: 10.1109/TNNLS.2022.3208252.
|
| [43] |
WANG Mou, WEI Shunjun, SHI Jun, et al. CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4476–4492. doi: 10.1109/JSTARS.2020.3014696.
|
| [44] |
PU Wei. SAE-Net: A deep neural network for SAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220714. doi: 10.1109/TGRS.2021.3139914.
|
| [45] |
WANG Yingzhou, LI Lijun, and GONG Ke. Narrowband experimental study on millimeter-wave indoor propagation[C]. ICCT'98. 1998 International Conference on Communication Technology. Proceedings (IEEE Cat. No.98EX243), Beijing, China, 1998: 5. doi: 10.1109/ICCT.1998.741269.
|
| [46] |
BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
|
| [47] |
XIANG Jinxi, DONG Yonggui, and YANG Yunjie. FISTA-Net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329–1339. doi: 10.1109/TMI.2021.3054167.
|
| [48] |
ZHOU Yulong, ZHONG Yu, WEI Zhun, et al. An improved deep learning scheme for solving 2-D and 3-D inverse scattering problem[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2853–2863. doi: 10.1109/TAP.2020.3027898.
|