Citation: | LIAO Zhipeng, DUAN Keqing, and GAO Fei. Collaborative nonlinear space-time adaptive processing and pulse compression based on neural networks[J]. Journal of Radars, in press. doi: 10.12000/JR25096 |
[1] |
SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008.
|
[2] |
谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586. doi: 10.12000/JR17073.
XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space time adaptive processing technique for airborne radar: An overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586. doi: 10.12000/JR17073.
|
[3] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005.
|
[4] |
ACKROYD M H and GHANI F. Optimum mismatched filters for sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 214–218. doi: 10.1109/TAES.1973.309769.
|
[5] |
TSAO J and STEINBERG B D. Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(4): 543–556. doi: 10.1109/8.1144.
|
[6] |
RABASTE O and SAVY L. Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3107–3122. doi: 10.1109/TAES.2015.130769.
|
[7] |
RABASTE O and BOSSE J. Robust mismatched filter for off-grid target[J]. IEEE Signal Processing Letters, 2019, 26(8): 1147–1151. doi: 10.1109/LSP.2019.2923054.
|
[8] |
BLUNT S D and GERLACH K. Adaptive pulse compression via MMSE estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 572–584. doi: 10.1109/TAES.2006.1642573.
|
[9] |
GERLACH K and BLUNT S D. Radar pulse compression repair[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1188–1195. doi: 10.1109/TAES.2007.4383610.
|
[10] |
BLUNT S D and HIGGINS T. Achieving real-time efficiency for adaptive radar pulse compression[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 116–121. doi: 10.1109/RADAR.2007.374201.
|
[11] |
BLUNT S D and HIGGINS T. Dimensionality reduction techniques for efficient adaptive pulse compression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 349–362. doi: 10.1109/TAES.2010.5417167.
|
[12] |
HIGGINS T, BLUNT S D, and GERLACH K. Gain-constrained adaptive pulse compression via an MVDR framework[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–6. doi: 10.1109/RADAR.2009.4977011.
|
[13] |
BLUNT S D, SHACKELFORD A K, GERLACH K, et al. Doppler compensation & single pulse imaging using adaptive pulse compression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 647–659. doi: 10.1109/TAES.2009.5089547.
|
[14] |
CUPRAK T D and WAGE K E. Efficient Doppler-compensated reiterative minimum mean-squared-error processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 562–574. doi: 10.1109/TAES.2017.2651480.
|
[15] |
AKHTAR J. Neural network LFM pulse compression[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149646.
|
[16] |
GAO Yvyang and DONG Ganggang. Pulse compression based on learnable matched filtering[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 2568–2571. doi: 10.1109/IGARSS53475.2024.10640745.
|
[17] |
李秀友, 董云龙, 黄勇, 等. 基于迭代线性约束最小方差的稳健自适应脉冲压缩方法[J]. 电子与信息学报, 2015, 37(10): 2300–2306. doi: 10.11999/JEIT141631.
LI Xiuyou, DONG Yunlong, HUANG Yong, et al. Robust adaptive pulse compression algorithm based on reiterative linearly constrained minimum variance[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2300–2306. doi: 10.11999/JEIT141631.
|
[18] |
裴家正, 黄勇, 陈宝欣, 等. 基于线性约束最小方差原则的稳健快速自适应脉冲压缩方法[J]. 系统工程与电子技术, 2022, 44(12): 3621–3630. doi: 10.12305/j.issn.1001-506X.2022.12.05.
PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Robust fast adaptive pulse compression method based on linearly constrained minimum variance principle[J]. Systems Engineering and Electronics, 2022, 44(12): 3621–3630. doi: 10.12305/j.issn.1001-506X.2022.12.05.
|
[19] |
WANG Yongliang, CHEN Jianwen, BAO Zheng, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 71–81. doi: 10.1109/TAES.2003.1188894.
|
[20] |
DIPIETRO R C. Extended factored space-time processing for airborne radar systems[C]. The 26th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 1992: 425–430. doi: 10.1109/ACSSC.1992.269236.
|
[21] |
DUAN Keqing, XU Hong, YUAN Huadong, et al. Reduced-DOF three-dimensional STAP via subarray synthesis for nonsidelooking planar array airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3311–3325. doi: 10.1109/TAES.2019.2958174.
|
[22] |
MELVIN W L and GUERCI J R. Knowledge-aided signal processing: A new paradigm for radar and other advanced sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 983–996. doi: 10.1109/TAES.2006.248215.
|
[23] |
MELVIN W L and SHOWMAN G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021–1042. doi: 10.1109/TAES.2006.248216.
|
[24] |
YANG Zhaocheng, DE LAMARE R C, and LIU Weijian. Sparsity-based STAP using alternating direction method with gain/phase errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2756–2768. doi: 10.1109/TAES.2017.2714938.
|
[25] |
DUAN Keqing, WANG Zetao, XIE Wenchong, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5): 544–553. doi: 10.1049/iet-spr.2016.0183.
|
[26] |
CUI Ning, XING Kun, YU Zhongjun, et al. Reduced-complexity subarray-level sparse recovery STAP for multichannel airborne radar WGMTI application[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6292–6313. doi: 10.1109/TAES.2023.3274104.
|
[27] |
WANG Degen, WANG Tong, CUI Weichen, et al. A clutter suppression algorithm via enhanced sparse Bayesian learning for airborne radar[J]. IEEE Sensors Journal, 2023, 23(10): 10900–10911. doi: 10.1109/JSEN.2023.3263919.
|
[28] |
DUAN Keqing, CHEN Hui, XIE Wenchong, et al. Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 193–207. doi: 10.1049/rsn2.12176.
|
[29] |
VENKATASUBRAMANIAN S, WONGKAMTHONG C, SOLTANI M, et al. Toward data-driven stap radar[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–5. doi: 10.1109/RadarConf2248738.2022.9764354.
|
[30] |
LIU Jing, LIAO Guisheng, XU Jingwei, et al. Autoencoder neural network-based STAP algorithm for airborne radar with inadequate training samples[J]. Remote Sensing, 2022, 14(23): 6021. doi: 10.3390/rs14236021.
|
[31] |
王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040.
WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040.
|
[32] |
RAJAN K and PATNAIK L M. Implementation of STAP algorithms on IBM SP2 and on ADSP 21062 dual digital signal processor systems[J]. Microprocessors and Microsystems, 2003, 27(4): 221–227. doi: 10.1016/S0141-9331(03)00022-X.
|
[33] |
廖志鹏, 段克清, 何锦浚, 等. 基于可解释深度卷积网络的空时自适应处理方法[J]. 雷达学报, 2024, 13(4): 917–928. doi: 10.12000/JR24024.
LIAO Zhipeng, DUAN Keqing, HE Jinjun, et al. Interpretable STAP algorithm based on deep convolutional neural network[J]. Journal of Radars, 2024, 13(4): 917–928. doi: 10.12000/JR24024.
|
[34] |
ZOU Bo, WANG Xin, FENG Weike, et al. DU-CG-STAP method based on sparse recovery and unsupervised learning for airborne radar clutter suppression[J]. Remote Sensing, 2022, 14(14): 3472. doi: 10.3390/rs14143472.
|
[35] |
朱晗归, 冯为可, 冯存前, 等. 机载雷达深度展开空时自适应处理方法[J]. 雷达学报, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
ZHU Hangui, FENG Weike, FENG Cunqian, et al. Deep unfolding based space-time adaptive processing method for airborne radar[J]. Journal of Radars, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
|
[36] |
LIAO Weikeng, CHOUDHARY A, WEINER D, et al. Design and evaluation of I/O strategies for parallel pipelined STAP applications[C]. 14th International Parallel and Distributed Processing Symposium, Cancun, Mexico, 2000: 655–662. doi: 10.1109/IPDPS.2000.846050.
|
[37] |
LIAO Weikeng, CHOUDHARY A, WEINER D, et al. I/O implementation and evaluation of parallel pipelined STAP on high performance computers[C]. 6th International Conference on High Performance Computing, Calcutta, India, 1999: 354–358. doi: 10.1007/978-3-540-46642-0_51.
|
[38] |
高飞, 陈辉, 任磊, 等. 一种新的机载雷达信号处理流程结构可行性证明及拓展性研究[J]. 信号处理, 2009, 25(11): 1785–1789. doi: 10.3969/j.issn.1003-0530.2009.11.023.
GAO Fei, CHEN Hui, REN Lei, et al. Feasibility-proving of a new airborne radar signal processing architecture and extended research[J]. Journal of Signal Processing, 2009, 25(11): 1785–1789. doi: 10.3969/j.issn.1003-0530.2009.11.023.
|
[39] |
YANG Yan, SUN Jian, LI Huibin, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521–538. doi: 10.1109/TPAMI.2018.2883941.
|
[40] |
MA Jiawei, LIU Xiaoyang, SHOU Zheng, et al. Deep tensor ADMM-net for snapshot compressive imaging[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 10222–10231. doi: 10.1109/ICCV.2019.01032.
|
[41] |
MARQUES E C, MACIEL N, NAVINER L, et al. Deep learning approaches for sparse recovery in compressive sensing[C]. 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 2019: 129–134. doi: 10.1109/ISPA.2019.8868841.
|
[42] |
ZHANG Kai, VAN GOOL L, and TIMOFTE R. Deep unfolding network for image super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3214–3223. doi: 10.1109/CVPR42600.2020.00328.
|
[43] |
BEN SAHEL Y, BRYAN J P, CLEARY B, et al. Deep unrolled recovery in sparse biological imaging: Achieving fast, accurate results[J]. IEEE Signal Processing Magazine, 2022, 39(2): 45–57. doi: 10.1109/MSP.2021.3129995.
|
[44] |
TAN Xiao, YANG Zhiwei, LI Xianghai, et al. Gridless sparse recovery STAP algorithm with array amplitude-phase errors for non-uniform linear array[J]. Digital Signal Processing, 2024, 144: 104296. doi: 10.1016/j.dsp.2023.104296.
|