Citation: | ZHOU Honghao, LIU Yanyang, LI Tao, et al. Structured low-rankness method of joint neighboring pixels for tomographic SAR 3d imaging[J]. Journal of Radars, in press. doi: 10.12000/JR25092 |
[1] |
FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
|
[2] |
REIGBER A, MOREIRA A, and PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]. IEEE International Geoscience and Remote Sensing Symposium. Hamburg, Germany, 1999: 44-46(1). doi: 10.1109/IGARSS.1999.773395.
|
[3] |
FORNARO G and SERAFINO F. Imaging of single and double scatterers in urban areas via SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3497–3505. doi: 10.1109/TGRS.2006.881748.
|
[4] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709.
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging: from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709.
|
[5] |
WANG C, LI Z, HAI Y, et al. Multistatic TomoSAR 3D Imaging Technique via Matrix Completion for Structured Targets[J]. IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2025.3563481.
|
[6] |
毕辉, 金双, 王潇, 等. 基于高分三号SAR数据的城市建筑高分辨率高维成像[J]. 雷达学报, 2022, 11(1): 40–51.
BI Hui, JIN Shuang, WANG Xiao, et al. High-resolution high-dimensional imaging of urban building based on GaoFen-3 SAR Data[J]. Journal of Radars, 2022, 11(1): 40–51.
|
[7] |
ZHU X X and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/TGRS.2010.2050487.
|
[8] |
ZHU X X and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098.
|
[9] |
RAMBOUR C, DENIS L, TUPIN F, et al. Introducing spatial regularization in SAR tomography reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8600–8617. doi: 10.1109/TGRS.2019.2921756.
|
[10] |
YANG Z and XIE L. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541.
|
[11] |
LI Y and CHI Y. Off-the-grid line spectrum denoising and estimation with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1257–1269. doi: 10.1109/TSP.2015.2496294.
|
[12] |
杜邦, 仇晓兰, 张柘, 等. 基于扰动的结合Off-grid目标的层析SAR三维成像方法[J]. 雷达学报, 2022, 11(1): 62–70.
DU Bang, QIU Xiaolan, ZHANG Zhe, et al. TomoSAR 3D imaging method incorporating off-grid targets based on perturbation[J]. Journal of Radars, 2022, 11(1): 62–70.
|
[13] |
CANDÈS E and FERNANDEZ-GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.21455.
|
[14] |
CHI Y and FERREIRA D. Harnessing Sparsity Over the Continuum: Atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39–57. doi: 10.1109/MSP.2019.2962209.
|
[15] |
YANG Z, XIE L and ZHANG C, Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference[J]. IEEE Transactions on Signal Processing, 2013, doi: 10.1109/TSP.2012.2222378.
|
[16] |
TANG G, BHASKAR B N SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451.
|
[17] |
WANG X and XU F. Tomographic SAR inversion by atomic-norm minimization—The gridless compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239113. doi: 10.1109/TGRS.2022.3223524.
|
[18] |
WANG X and XU F. Efficient ADMM algorithm for atomic norm minimization in SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5211415. doi: 10.1109/TGRS.2024.3395510.
|
[19] |
GAO S, ZHANG B, XU G, et al. A robust super-resolution gridless imaging framework for UAV-borne SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5210917. doi: 10.1109/TGRS.2024.3393972.
|
[20] |
ZHANG B, XU G, YU H, et al. Array 3-D SAR tomography using robust gridless compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5205013. doi: 10.1109/TGRS.2023.3259980.
|
[21] |
LIU M, WANG Y, DING Z, et al. Atomic norm minimization based fast off-grid tomographic SAR imaging with nonuniform sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203517. doi: 10.1109/TGRS.2024.3358863.
|
[22] |
SHAO M, ZHANG Z, LI J, et al. TADCG: A novel gridless tomographic SAR imaging approach based on the alternate descent conditional gradient algorithm with robustness and efficiency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5201213. doi: 10.1109/TGRS.2023.3345454.
|
[23] |
ZHANG S, HAO Y, WANG M, et al. Multichannel Hankel matrix completion through nonconvex optimization[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(4): 617–632. doi: 10.1109/JSTSP.2018.2827299.
|
[24] |
CHEN Y and CHI Y. Robust spectral compressed sensing via structured matrix completion[J]. IEEE Transactions on Information Theory, 2014, 60(10): 6576–6601. doi: 10.1109/TIT.2014.2343623.
|
[25] |
CAI J F, WANG T and WEI K. Spectral compressed sensing via projected gradient descent[J]. SIAM Journal on Optimization, 2018, 28(3): 2625–2653. doi: 10.1137/17M1141394.
|
[26] |
LI J, CUI W and ZHANG X. Projected gradient descent for spectral compressed sensing via symmetric Hankel factorization[J]. IEEE Transactions on Signal Processing, 2024, 72: 1590–1606. doi: 10.1109/TSP.2024.3378004.
|
[27] |
仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498.
QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: A SAR microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498.
|
[28] |
ZHU X X, GE N and SHAHZAD M. Joint sparsity in SAR tomography for urban mapping[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1498–1509. doi: 10.1109/JSTSP.2015.2469646.
|
[29] |
XU G, ZHANG B, YU H, et al. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(4): 32–69. doi: 10.1109/MGRS.2022.3218801.
|
[30] |
杨磊,王腾腾,陈英杰,等. 低秩矩阵补全高分辨SAR成像特征重建[J]. 电子与信息学报, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.
YANG Lei, WANG Tengteng, CHEN Yingjie, et al. Feature reconstruction of high-resolution SAR imagery based on low rank matrix completion[J]. Journal of Electronics and Information Technology, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.
|
[31] |
MAO S and CHEN J. Blind super-resolution of point sources via projected gradient descent[J]. IEEE Transactions on Signal Processing, 2022, 70: 4649–4664. doi: 10.1109/TSP.2022.3209006.
|
[32] |
VU T and RAICH R. On asymptotic linear convergence of projected gradient descent for constrained least squares[J]. IEEE Transactions on Signal Processing, 2022, 70: 4061–4076. doi: 10.1109/TSP.2022.3192142.
|
[33] |
RAO B D and HARI K V S. Performance analysis of Root-MUSIC[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540.
|
[34] |
BUDILLON A and SCHIRINZI G. GLRT based on support estimation for multiple scatterers detection in SAR tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1086–1094. doi: 10.1109/JSTARS.2015.2494376.
|
[35] |
任烨仙, 徐丰. 若干层析SAR成像方法在解叠掩性能上的对比分析[J]. 雷达学报, 2022, 11(1): 71–82.
REN Yexian and XU Feng. Comparative analysis of layover resolution performance for TomoSAR imaging methods[J]. Journal of Radars, 2022, 11(1): 71–82.
|
[36] |
姬昂, 裴昊, 张邦杰, 等. 阵列SAR高分辨三维成像与点云聚类研究[J]. 电子与信息学报, 2024, 46(5): 2087–2094.
JI Ang, PEI Hao, ZHANG Bangjie, et al. High-resolution 3D imaging and point cloud clustering for array SAR[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2087–2094.
|
[37] |
任子帅, 张照, 高雨欣, 等. 基于自适应高程约束的TomoSAR三维成像[J]. 雷达学报, 2023, 12(5): 1056–1068. doi: 10.12000/JR23111.
REN Zishuai, ZHANG Zhao, GAO Yuxin, et al. Three-dimensional imaging of tomographic SAR based on adaptive elevation constraint[J]. Journal of Radars, 2023, 12(5): 1056–1068. doi: 10.12000/JR23111.
|
[38] |
LI T, ZHANG Y, WANG L, et al. First application demonstrations of Lu Tan-1 SAR satellites[C]. 2023 SAR in Big Data Era (BIGSARDATA). Beijing, China, 2023: 1-4. doi: 10.1109/BIGSARDATA59007.2023.10294711.
|
[39] |
XU G, CHEN Y, JI A, et al. 3-D high-resolution imaging and array calibration of ground-based millimeter-wave MIMO radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(8): 4919–4931. doi: 10.1109/TMTT.2024.3352406.
|