Turn off MathJax
Article Contents
ZHOU Honghao, LIU Yanyang, LI Tao, et al. Structured low-rankness method of joint neighboring pixels for tomographic SAR 3d imaging[J]. Journal of Radars, in press. doi: 10.12000/JR25092
Citation: ZHOU Honghao, LIU Yanyang, LI Tao, et al. Structured low-rankness method of joint neighboring pixels for tomographic SAR 3d imaging[J]. Journal of Radars, in press. doi: 10.12000/JR25092

Structured Low-Rankness Method of Joint Neighboring Pixels for Tomographic SAR 3D Imaging

DOI: 10.12000/JR25092 CSTR: 32380.14.JR25092
Funds:  The National Natural Science Foundation of China (62071113), The Natural Science Foundation of Jiangsu Province (BK20211559), The Fundamental Research Funds for the Central Universities (2242022k60008)
  • Available Online: 2025-09-30
  • Tomographic SAR (TomoSAR) has significant value in scientific research and applications, as it enables three-dimensional (3D) imaging to address limitations such as scene overlay and projection geometric distortion. The elevation resolution of TomoSAR is limited by the aperture in the elevation direction. Consequently, super-resolution algorithms such as compressive sensing (CS) are generally used to enhance the performance of 3D imaging. However, conventional CS methods suffer from grid mismatch issues due to predefined discrete grids, which lead to limited resolution under practical constraints, such as limited channels and low signal-to-noise ratios. To address these limitations, a novel, gridless, super-resolution algorithm based on the structured low-rankness of joint neighboring pixels is proposed herein for tomographic 3D SAR Imaging. By enhancing the intrinsic structural observation, the efficacy of the model for 3D reconstruction can be effectively improved by increasing the number of valid observations. Specifically, a gridless, structured, low-rank, non-convex optimization model is constructed by leveraging the joint sparse characteristics of neighboring pixels, overcoming the limitations of traditional sparse grid-based approaches. Furthermore, an efficient solution is achieved using a projected gradient descent algorithm, and the dependence of the reconstruction performance on the sampling positions is reduced by introducing an incoherent feasible region constraint. Finally, the superiority of the proposed algorithm is validated through both simulation and analysis of real measured datasets, including the SARMV3D-1.0 airborne array dataset and spaceborne LuTan-1 dataset. The proposed algorithm achieves superior 3D reconstruction accuracy and stability compared to most existing state-of-the-art methods.

     

  • loading
  • [1]
    FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
    [2]
    REIGBER A, MOREIRA A, and PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]. IEEE International Geoscience and Remote Sensing Symposium. Hamburg, Germany, 1999: 44-46(1). doi: 10.1109/IGARSS.1999.773395.
    [3]
    FORNARO G and SERAFINO F. Imaging of single and double scatterers in urban areas via SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3497–3505. doi: 10.1109/TGRS.2006.881748.
    [4]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709.

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging: from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709.
    [5]
    WANG C, LI Z, HAI Y, et al. Multistatic TomoSAR 3D Imaging Technique via Matrix Completion for Structured Targets[J]. IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2025.3563481.
    [6]
    毕辉, 金双, 王潇, 等. 基于高分三号SAR数据的城市建筑高分辨率高维成像[J]. 雷达学报, 2022, 11(1): 40–51.

    BI Hui, JIN Shuang, WANG Xiao, et al. High-resolution high-dimensional imaging of urban building based on GaoFen-3 SAR Data[J]. Journal of Radars, 2022, 11(1): 40–51.
    [7]
    ZHU X X and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/TGRS.2010.2050487.
    [8]
    ZHU X X and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098.
    [9]
    RAMBOUR C, DENIS L, TUPIN F, et al. Introducing spatial regularization in SAR tomography reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8600–8617. doi: 10.1109/TGRS.2019.2921756.
    [10]
    YANG Z and XIE L. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541.
    [11]
    LI Y and CHI Y. Off-the-grid line spectrum denoising and estimation with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1257–1269. doi: 10.1109/TSP.2015.2496294.
    [12]
    杜邦, 仇晓兰, 张柘, 等. 基于扰动的结合Off-grid目标的层析SAR三维成像方法[J]. 雷达学报, 2022, 11(1): 62–70.

    DU Bang, QIU Xiaolan, ZHANG Zhe, et al. TomoSAR 3D imaging method incorporating off-grid targets based on perturbation[J]. Journal of Radars, 2022, 11(1): 62–70.
    [13]
    CANDÈS E and FERNANDEZ-GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.21455.
    [14]
    CHI Y and FERREIRA D. Harnessing Sparsity Over the Continuum: Atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39–57. doi: 10.1109/MSP.2019.2962209.
    [15]
    YANG Z, XIE L and ZHANG C, Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference[J]. IEEE Transactions on Signal Processing, 2013, doi: 10.1109/TSP.2012.2222378.
    [16]
    TANG G, BHASKAR B N SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451.
    [17]
    WANG X and XU F. Tomographic SAR inversion by atomic-norm minimization—The gridless compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239113. doi: 10.1109/TGRS.2022.3223524.
    [18]
    WANG X and XU F. Efficient ADMM algorithm for atomic norm minimization in SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5211415. doi: 10.1109/TGRS.2024.3395510.
    [19]
    GAO S, ZHANG B, XU G, et al. A robust super-resolution gridless imaging framework for UAV-borne SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5210917. doi: 10.1109/TGRS.2024.3393972.
    [20]
    ZHANG B, XU G, YU H, et al. Array 3-D SAR tomography using robust gridless compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5205013. doi: 10.1109/TGRS.2023.3259980.
    [21]
    LIU M, WANG Y, DING Z, et al. Atomic norm minimization based fast off-grid tomographic SAR imaging with nonuniform sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203517. doi: 10.1109/TGRS.2024.3358863.
    [22]
    SHAO M, ZHANG Z, LI J, et al. TADCG: A novel gridless tomographic SAR imaging approach based on the alternate descent conditional gradient algorithm with robustness and efficiency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5201213. doi: 10.1109/TGRS.2023.3345454.
    [23]
    ZHANG S, HAO Y, WANG M, et al. Multichannel Hankel matrix completion through nonconvex optimization[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(4): 617–632. doi: 10.1109/JSTSP.2018.2827299.
    [24]
    CHEN Y and CHI Y. Robust spectral compressed sensing via structured matrix completion[J]. IEEE Transactions on Information Theory, 2014, 60(10): 6576–6601. doi: 10.1109/TIT.2014.2343623.
    [25]
    CAI J F, WANG T and WEI K. Spectral compressed sensing via projected gradient descent[J]. SIAM Journal on Optimization, 2018, 28(3): 2625–2653. doi: 10.1137/17M1141394.
    [26]
    LI J, CUI W and ZHANG X. Projected gradient descent for spectral compressed sensing via symmetric Hankel factorization[J]. IEEE Transactions on Signal Processing, 2024, 72: 1590–1606. doi: 10.1109/TSP.2024.3378004.
    [27]
    仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: A SAR microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498.
    [28]
    ZHU X X, GE N and SHAHZAD M. Joint sparsity in SAR tomography for urban mapping[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1498–1509. doi: 10.1109/JSTSP.2015.2469646.
    [29]
    XU G, ZHANG B, YU H, et al. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(4): 32–69. doi: 10.1109/MGRS.2022.3218801.
    [30]
    杨磊,王腾腾,陈英杰,等. 低秩矩阵补全高分辨SAR成像特征重建[J]. 电子与信息学报, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.

    YANG Lei, WANG Tengteng, CHEN Yingjie, et al. Feature reconstruction of high-resolution SAR imagery based on low rank matrix completion[J]. Journal of Electronics and Information Technology, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.
    [31]
    MAO S and CHEN J. Blind super-resolution of point sources via projected gradient descent[J]. IEEE Transactions on Signal Processing, 2022, 70: 4649–4664. doi: 10.1109/TSP.2022.3209006.
    [32]
    VU T and RAICH R. On asymptotic linear convergence of projected gradient descent for constrained least squares[J]. IEEE Transactions on Signal Processing, 2022, 70: 4061–4076. doi: 10.1109/TSP.2022.3192142.
    [33]
    RAO B D and HARI K V S. Performance analysis of Root-MUSIC[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540.
    [34]
    BUDILLON A and SCHIRINZI G. GLRT based on support estimation for multiple scatterers detection in SAR tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1086–1094. doi: 10.1109/JSTARS.2015.2494376.
    [35]
    任烨仙, 徐丰. 若干层析SAR成像方法在解叠掩性能上的对比分析[J]. 雷达学报, 2022, 11(1): 71–82.

    REN Yexian and XU Feng. Comparative analysis of layover resolution performance for TomoSAR imaging methods[J]. Journal of Radars, 2022, 11(1): 71–82.
    [36]
    姬昂, 裴昊, 张邦杰, 等. 阵列SAR高分辨三维成像与点云聚类研究[J]. 电子与信息学报, 2024, 46(5): 2087–2094.

    JI Ang, PEI Hao, ZHANG Bangjie, et al. High-resolution 3D imaging and point cloud clustering for array SAR[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2087–2094.
    [37]
    任子帅, 张照, 高雨欣, 等. 基于自适应高程约束的TomoSAR三维成像[J]. 雷达学报, 2023, 12(5): 1056–1068. doi: 10.12000/JR23111.

    REN Zishuai, ZHANG Zhao, GAO Yuxin, et al. Three-dimensional imaging of tomographic SAR based on adaptive elevation constraint[J]. Journal of Radars, 2023, 12(5): 1056–1068. doi: 10.12000/JR23111.
    [38]
    LI T, ZHANG Y, WANG L, et al. First application demonstrations of Lu Tan-1 SAR satellites[C]. 2023 SAR in Big Data Era (BIGSARDATA). Beijing, China, 2023: 1-4. doi: 10.1109/BIGSARDATA59007.2023.10294711.
    [39]
    XU G, CHEN Y, JI A, et al. 3-D high-resolution imaging and array calibration of ground-based millimeter-wave MIMO radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(8): 4919–4931. doi: 10.1109/TMTT.2024.3352406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(18) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint