Turn off MathJax
Article Contents
SU Qi, LIU Benyuan, CHEN Xiaotian, et al. Data acquisition for detecting low-observable targets at sea by using the holographic staring radar[J]. Journal of Radars, in press. doi: 10.12000/JR25055
Citation: SU Qi, LIU Benyuan, CHEN Xiaotian, et al. Data acquisition for detecting low-observable targets at sea by using the holographic staring radar[J]. Journal of Radars, in press. doi: 10.12000/JR25055

Data Acquisition for Detecting Low-observable Targets at Sea by Using the Holographic Staring Radar

DOI: 10.12000/JR25055 CSTR: 32380.14.JR25055
More Information
  • Corresponding author: CHEN Xiaotian, 48333390@qq.com; ZHI Guangxin, 1019739286@qq.com
  • Received Date: 2025-03-24
  • Rev Recd Date: 2025-06-29
  • Available Online: 2025-07-09
  • Detecting targets despite sea clutter is crucial in military and civilian applications. In complex marine environments, sea clutter exhibits target-like spikes and inherently broad-spectrum characteristics, posing a significant challenge for marine radars in detecting Low-Slow-Small (LSS) targets and leading to high false alarm rates. In this study, an S-band holographic staring radar with high-Doppler and high-range-resolution capabilities (i.e., “dual-high” capability) was utilized in sea detection experiments. We obtained sea clutter data, LSS target data (over the sea surface and in the air), ground truth data on target positions and trajectories, as well as wind and wave data. Using these data, we constructed an S-band holographic staring radar dataset for low-observable targets at sea. The time-domain, frequency-domain, and time-Doppler characteristics of the dataset were analyzed, and the results served as a reference for data utilization. Future work will involve continuing experiments to expand the maritime experimental environment (e.g., sea state and region) and target types toward enhancing data diversity. This open dataset will support the enhancement of new radar systems for detecting low-observable targets at sea and improving maritime target detection and recognition performance.

     

  • loading
  • [1]
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: The McGraw-Hill Companies Inc., 2008.
    [2]
    WARD K D and WATTS S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 146–157. doi: 10.1049/iet-rsn.2009.0132.
    [3]
    陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004.

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004.
    [4]
    GRECO M, STINCO P, and GINI F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 239–250. doi: 10.1049/iet-rsn.2009.0088.
    [5]
    MELIEF H W, GREIDANUS H, VAN GENDEREN P, et al. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 985–993. doi: 10.1109/TGRS.2005.862497.
    [6]
    刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089.

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089.
    [7]
    赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001.

    ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001.
    [8]
    陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.

    CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.
    [9]
    许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084.

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084.
    [10]
    Copernicus Marine Service (CMEMS). Global ocean hourly sea surface wind and stress from scatterometer and model product[EB/OL]. https://data.marine.copernicus.eu/product/WIND_GLO_PHY_L4_NRT_012_004/services. doi: https://doi.org/10.48670/moi-00305.
    [11]
    Copernicus Marine Service (CMEMS). Global ocean waves reanalysis product[EB/OL]. https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_WAV_001_032/descript ion. doi: https://doi.org/10.48670/moi-00022.
    [12]
    WU Xijie, DING Hao, LIU Ningbo, et al. Priori information-based feature extraction method for small target detection in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115315. doi: 10.1109/TGRS.2022.3188046.
    [13]
    丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.

    DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
    [14]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657.
    [15]
    刘添豪, 尧泽昆, 陈曦, 等. 一种空基雷达高速微弱机动目标信号相参积累方法[J]. 电讯技术, 2023, 63(9): 1361–1367. doi: 10.20079/j.issn.1001-893x.220504002.

    LIU Tianhao, YAO Zekun, CHEN Xi, et al. A coherent integration method for signals of high-speed weak maneuvering target of air-borne radar[J]. Telecommunication Engineering, 2023, 63(9): 1361–1367. doi: 10.20079/j.issn.1001-893x.220504002.
    [16]
    ZHANG Shunsheng, ZHANG Wei, and WANG Yang. Multiple targets’ detection in terms of Keystone transform at the low SNR level[C]. 2008 International Conference on Information and Automation, Changsha, China, 2008: 1–4. doi: 10.1109/ICINFA.2008.4607957.
    [17]
    李芳芳. 海浪浪花与船行波建模绘制技术研究与实现[D]. [硕士论文], 国防科学技术大学, 2014.

    LI Fangfang. Wave foam and ship waves modeling and rendering technology research and achievement[D]. [Master dissertation], National University of Defense Technology, 2014.
    [18]
    SORENSEN R M. Basic Wave Mechanics: For Coastal and Ocean Engineers[M]. New York: Wiley, 1993.
    [19]
    PLANT W J, KELLER W C, HESANY V, et al. Bound waves and Bragg scattering in a wind-wave tank[J]. Journal of Geophysical Research: Oceans, 1999, 104(C2): 3243–3263. doi: 10.1029/1998JC900061.
    [20]
    PLANT W J and FARQUHARSON G. Wave shadowing and modulation of microwave backscatter from the ocean[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08010.
    [21]
    张龙刚. S波段多普勒雷达海浪提取关键技术研究[D]. [博士论文], 武汉大学, 2016.

    ZHANG Longgang. Ocean wave extracting technology using S-band Doppler radar[D]. [Ph.D. dissertation], Wuhan University, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(132) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint