Citation: | ZHANG Zhuoyu, GONG Pengcheng, YIN Chen, et al. Research on joint design of transceiver for MIMO radar-communication integration under extended clutter[J]. Journal of Radars, in press. doi: 10.12000/JR25035 |
[1] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832.
|
[2] |
刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2020, 10(3): 467–484. doi: 10.12000/JR20113.
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
|
[3] |
程翔, 张浩天, 杨宗辉, 等. 车联网通信感知一体化研究: 现状与发展趋势[J]. 通信学报, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.
CHENG Xiang, ZHANG Haotian, YANG Zonghui, et al. Integrated sensing and communications for internet of vehicles: Current status and development trend[J]. Journal on Communications, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.
|
[4] |
余显祥, 姚雪, 杨婧, 等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
|
[5] |
MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
|
[6] |
MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/LWC.2022.3161338.
|
[7] |
ARABAS P, SIKORA A, and SZYNKIEWICZ W. Energy-aware activity control for wireless sensing infrastructure using periodic communication and mixed-integer programming[J]. Energies, 2021, 14(16): 4828. doi: 10.3390/en14164828.
|
[8] |
唐波, 汤俊, 胡元奎. 基于MIMO阵列的综合射频系统技术研究[J]. 信息对抗技术, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006.
TANG Bo, TANG Jun, and HU Yuankui. Multifunction radio frequency systems based on MIMO array[J]. Information Countermeasure Technology, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006.
|
[9] |
WEN Cai, HUANG Yan, and DAVIDSON T N. Efficient transceiver design for MIMO dual-function radar-communication systems[J]. IEEE Transactions on Signal Processing, 2023, 71: 1786–1801. doi: 10.1109/TSP.2023.3275274.
|
[10] |
DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al. Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2481–2492. doi: 10.1109/TAES.2018.2820370.
|
[11] |
CHEN Yufeng, LIAO Guisheng, LIU Yongjun, et al. Joint subcarrier and power allocation for integrated OFDM waveform in RadCom systems[J]. IEEE Communications Letters, 2023, 27(1): 253–257. doi: 10.1109/LCOMM.2022.3216865.
|
[12] |
范绍帅, 王煜菲, 田辉, 等. 面向无人机雷达通信一体化系统的轨迹与资源联合优化[J]. 通信学报, 2021, 42(11): 182–192. doi: 10.11959/j.issn.1000-436x.2021201.
FAN Shaoshuai, WANG Yufei, TIAN Hui, et al. Joint optimization of trajectory and resource allocation for UAV integrated radar and communication system[J]. Journal on Communications, 2021, 42(11): 182–192. doi: 10.11959/j.issn.1000-436x.2021201.
|
[13] |
SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164.
|
[14] |
DU Ying, LIU Yao, HAN Kaifeng, et al. Multi-user and multi-target dual-function radar-communication waveform design: Multi-fold performance tradeoffs[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 483–496. doi: 10.1109/TGCN.2023.3234275.
|
[15] |
WU Wenjun, TANG Bo, and WANG Xuyang. Constant-modulus waveform design for dual-function radar-communication systems in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4005–4017. doi: 10.1109/TAES.2023.3234927.
|
[16] |
LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1932–1950. doi: 10.1109/JSAC.2022.3155512.
|
[17] |
LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
|
[18] |
GUO Baoxi, LIANG Junli, WANG Guanyang, et al. Bistatic MIMO DFRC system waveform design via fractional programming[J]. IEEE Transactions on Signal Processing, 2023, 71: 1952–1967. doi: 10.1109/TSP.2023.3279900.
|
[19] |
YUAN Weijie, LIU Fan, MASOUROS C, et al. Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1442–1456. doi: 10.1109/TWC.2020.3033776.
|
[20] |
KUMARI P, VOROBYOV S A, and HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication–radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 715–730. doi: 10.1109/TSP.2019.2956689.
|
[21] |
TANG Bo, WANG Hai, QIN Lilong, et al. Waveform design for dual-function MIMO radar-communication systems[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104378.
|
[22] |
YAZICI B and XIE Gang. Wideband extended range-Doppler imaging and waveform design in the presence of clutter and noise[J]. IEEE transactions on Information Theory, 2006, 52(10): 4563–4580. doi: 10.1109/TIT.2006.881750.
|
[23] |
CHEN Chunyang and VAIDYANATHAN P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632.
|
[24] |
BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642.
|
[25] |
GOODMAN N A, VENKATA P R, and NEIFELD M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 105–113. doi: 10.1109/JSTSP.2007.897053.
|
[26] |
QIAN Junhui, SUN Zhouran, ZHANG Jinru, et al. Designing sequences for the coexistence of radar with extended target and communication energy harvesting[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(5): 2894–2898. doi: 10.1109/TCSII.2024.3351729.
|
[27] |
YANG Yang and BLUM R S. Minimax robust MIMO radar waveform design[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 147–155. doi: 10.1109/JSTSP.2007.897056.
|
[28] |
TANG Bo and TANG Jun. Robust waveform design of wideband cognitive radar for extended target detection[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 3096–3100. doi: 10.1109/ICASSP.2016.7472247.
|
[29] |
LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
|
[30] |
CHENG Ziyang, WU Linlong, WANG Bowen, et al. Double-phase-shifter based hybrid beamforming for mmWave DFRC in the presence of extended target and clutters[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3671–3686. doi: 10.1109/TWC.2022.3220368.
|
[31] |
KARBASI S M, AUBRY A, DE MAIO A, et al. Robust transmit code and receive filter design for extended targets in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 1965–1976. doi: 10.1109/TSP.2015.2404301.
|
[32] |
CHEN Xixi, DENG Xiaobo, and HAO Zhimei. Waveform design for extended target detection under a peak to average power ratio constraint[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059566.
|
[33] |
XU Zhou, XIE Zhuang, FAN Chongyi, et al. Robust radar waveform design for extended targets with multiple spectral compatibility constraints[J]. Signal Processing, 2023, 204: 108850. doi: 10.1016/j.sigpro.2022.108850.
|
[34] |
ZHU Jinkun, SONG Yongping, TANG Yuhang, et al. Performance trade-off in waveform design for dual-function radar and communication system[J]. IEEE Wireless Communications Letters, 2024, 13(1): 74–78. doi: 10.1109/LWC.2023.3319972.
|
[35] |
YANG Rui, JIANG Hong, and QU Liangdong. Waveform design for MIMO dual-functional radar-communication system using MUI energy minimization with PAPR and CRB constraints[J]. IEEE Communications Letters, 2023, 27(5): 1417–1421. doi: 10.1109/LCOMM.2023.3259549.
|
[36] |
GUO Wenbo, LIN Lang, ZHAO Hongzhi, et al. Reference-free artificial noise waveform design and cancellation for secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10149–10154. doi: 10.1109/TVT.2022.3178884.
|
[37] |
SU Nanchi, LIU Fan, WEI Zhongxiang, et al. Secure dual-functional radar-communication transmission: Exploiting interference for resilience against target eavesdropping[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7238–7252. doi: 10.1109/TWC.2022.3156893.
|
[38] |
WEI Zhongxiang, LIU Fan, MASOUROS C, et al. Toward multi-functional 6G wireless networks: Integrating sensing, communication, and security[J]. IEEE Communications Magazine, 2022, 60(4): 65–71. doi: 10.1109/MCOM.002.2100972.
|
[39] |
STOICA P, LI Jian, and ZHU Xumin. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593–2598. doi: 10.1109/TSP.2007.916139.
|
[40] |
AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing Letters, 2016, 23(4): 483–487. doi: 10.1109/LSP.2016.2532739.
|
[41] |
CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086.
|
[42] |
CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052.
|
[43] |
RAZAVIYAYN M, HUANG Tianjian, LU Songtao, et al. Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances[J]. IEEE Signal Processing Magazine, 2020, 37(5): 55–66. doi: 10.1109/MSP.2020.3003851.
|
[44] |
XU Zhou, ZHU Jiahua, XIE Zhuang, et al. MIMO radar robust waveform-filter design for extended targets based on Lagrangian duality[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1021–1036. doi: 10.1109/TAES.2022.3194501.
|
[45] |
HUANG Yongwei, FU Hao, VOROBYOV S A, et al. Robust adaptive beamforming via worst-case SINR maximization with nonconvex uncertainty sets[J]. IEEE Transactions on Signal Processing, 2023, 71: 218–232. doi: 10.1109/TSP.2023.3240312.
|
[46] |
KIM S J, MAGNANI A, MUTAPCIC A, et al. Robust beamforming via worst-case SINR maximization[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1539–1547. doi: 10.1109/TSP.2007.911498.
|
[47] |
DE MAIO A, HUANG Yongwei, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683–2697. doi: 10.1109/TSP.2011.2128313.
|
[48] |
吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105.
WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105.
|