Citation: | LI Jun’ao, LI Zhongyu, YANG Qing, et al. Dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR[J]. Journal of Radars, in press. doi: 10.12000/JR25024 |
[1] |
杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
|
[2] |
胡克彬. SAR高精度成像方法研究[D]. [博士论文], 电子科技大学, 2017.
HU Kebin. Research on high-precision imaging methods for synthetic aperture radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
|
[3] |
张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.
ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.
|
[4] |
李中余. 双基地合成孔径雷达动目标检测与成像技术研究[D]. [博士论文], 电子科技大学, 2017.
LI Zhongyu. Research on bistatic SAR moving target detection and imaging technology[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
|
[5] |
XIONG Tao, LI Yachao, LI Qi, et al. Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4765–4774. doi: 10.1109/TGRS.2020.3011420.
|
[6] |
ZHAO Ye, ZHANG Ming, ZHAO Yanwei, et al. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4250–4258. doi: 10.1109/TGRS.2015.2393915.
|
[7] |
LI Zhongyu, WU Junjie, YANG Jianyu, et al. Bistatic SAR Clutter Suppression: Theory, Method, and Experiment[M]. Singapore: Springer, 2022, 1–137. doi: 10.1007/978-981-19-0159-1.
|
[8] |
LI Junao, LI Zhongyu, YANG Qing, et al. Joint clutter suppression and moving target indication in 2-D azimuth rotated time domain for single-channel bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202516. doi: 10.1109/TGRS.2023.3237553.
|
[9] |
NOHARA T J, WEBER P, PREMJI A, et al. Airborne ground moving target indication using non-side-looking antennas[C]. 1998 IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197), Dallas, USA, 1998: 269–274. doi: 10.1109/NRC.1998.678013.
|
[10] |
KLEMM R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1987, 134(3): 269–276. doi: 10.1049/ip-f-1.1987.0054.
|
[11] |
YANG Zhaocheng, LI Xiang, WANG Hongqiang, et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1214–1218. doi: 10.1109/LGRS.2012.2236639.
|
[12] |
KAN Qingyun, XU Jingwei, LIAO Guisheng, et al. Clutter characteristics analysis and range-dependence compensation for space-air bistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5101615. doi: 10.1109/TGRS.2023.3347547.
|
[13] |
李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报(中英文), 待出版. 1–19. doi: 10.12000/JR24032.
LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptive ANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. 1–19. doi: 10.12000/JR24032,
|
[14] |
LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
|
[15] |
穆慧琳. 多通道SAR地面运动目标检测与成像研究[D]. [博士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.
MU Huilin. Research on ground moving target detection and imaging in multichannel SAR system[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.
|
[16] |
张文鹏. 复杂条件下多通道SAR运动目标检测与参数估计方法研究[D]. [博士论文], 国防科技大学, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.
ZHANG Wenpeng. Research of moving target detection and parameter estimation methods for multichannel SAR in complicated conditions[D]. [Ph.D. dissertation], National University of Defense Technology, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.
|
[17] |
YANG Taoli, LI Zhenfang, SUO Zhiyong, et al. Performance analysis for multichannel HRWS SAR systems based on STAP approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1409–1413. doi: 10.1109/LGRS.2013.2258889.
|
[18] |
GUERCI J R, GOLDSTEIN J S, REED I S. Optimal and adaptive reduced-rank STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647–663. doi: 10.1109/7.845255.
|
[19] |
CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574.
|
[20] |
CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260.
|
[21] |
HOU Yingjie, WANG Junfeng, LIU Xingzhao, et al. An automatic SAR-GMTI algorithm based on DPCA[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 592–595. doi: 10.1109/IGARSS.2014.6946492.
|
[22] |
XU Jia, HUANG Zuzhen, YAN Liang, et al. SAR ground moving target indication based on relative residue of DPCA processing[J]. Sensors, 2016, 16(10): 1676. doi: 10.3390/s16101676.
|
[23] |
LI Zhongyu, LI Shanchuan, LIU Zhutian, et al. Bistatic forward-looking SAR MP-DPCA method for space-time extension clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6565–6579. doi: 10.1109/TGRS.2020.2977982.
|
[24] |
WARD J. Space-time adaptive processing for airborne radar[C]. IEE Colloquium on Space-Time Adaptive Processing (Ref. No.1998/241), London, UK, 1998: 2/1–2/6. doi: 10.1049/ic:19980240.
|
[25] |
HUANG Penghui, YANG Hao, XIA Xianggen, et al. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117422. doi: 10.1109/TGRS.2022.3204324.
|
[26] |
HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. Multichannel sea clutter modeling for spaceborne early warning radar and clutter suppression performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8349–8366. doi: 10.1109/TGRS.2020.3039495.
|
[27] |
HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109721. doi: 10.1109/TGRS.2022.3144668.
|
[28] |
LV Mingjie and ZHOU Chen. Study on sea clutter suppression methods based on a realistic radar dataset[J]. Remote Sensing, 2019, 11(23): 2721. doi: 10.3390/rs11232721.
|
[29] |
ZHANG Tianfu, DENG Yunkai, and WANG Yongliang. A novel joint dimensionality-reduced adaptive clutter suppression method for space-based early warning radar utilizing frequency diversity array[J]. IEEE Transactions on Radar Systems, 2024, 2: 1123–1134. doi: 10.1109/TRS.2024.3483772.
|
[30] |
WANG Yumiao, ZHAO Wenjing, WANG Xiang, et al. Nonhomogeneous sea clutter suppression using complex-valued U-Net model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027705. doi: 10.1109/LGRS.2022.3214633.
|
[31] |
JI Yuanzheng, LIU Aijun, SONG Zhen, et al. HFSWR clutter suppression and target detection method based on RRN and exponential weight control[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3507305. doi: 10.1109/LGRS.2024.3417486.
|
[32] |
HUA Qinglong, YUN Zhang, MU Huilin, et al. An approach of sea clutter suppression for SAR images by self-supervised complex-valued deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4512505. doi: 10.1109/LGRS.2022.3183582.
|
[33] |
邓云凯, 王宇. 先进双基SAR技术研究[J]. 雷达学报, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.
DENG Yunkai and WANG Yu. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.
|
[34] |
陈士超, 邢孟道, 张双喜, 等. 一种串行双基SAR的SIFT成像算法[J]. 雷达学报, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.
CHEN Shichao, XING Mengdao, ZHANG Shuangxi, et al. A SIFT algorithm for bistatic SAR imaging in spaceborne constant-offset configuration[J]. Journal of Radars, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.
|
[35] |
刘裕洲, 蔡天倚, 李亚超, 等. 联合距离方位二维NCS的星弹双基前视SAR成像算法[J]. 雷达学报, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
|
[36] |
武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
|
[37] |
LI Zhongyu, WU Junjie, YI Qingying, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000–1016. doi: 10.1109/TAES.2014.130539.
|
[38] |
LIU Zhutian, YE Hongda, LI Zhongyu, et al. Optimally matched space-time filtering technique for BFSAR nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210617. doi: 10.1109/TGRS.2021.3090462.
|
[39] |
LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on Kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
|
[40] |
ZHU Daiyin, LI Yong, and ZHU Zhaoda. A keystone transform without interpolation for sar ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147.
|
[41] |
WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840.
|
[42] |
WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599.
|
[43] |
SCHöNEMANN P H. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1): 1–10. doi: 10.1007/BF02289451.
|
[44] |
SKOLNIK M I. Radar Handbook[M]. New York: McGraw, 1970, 262–304.
|