Turn off MathJax
Article Contents
LI Jun’ao, LI Zhongyu, YANG Qing, et al. Dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR[J]. Journal of Radars, in press. doi: 10.12000/JR25024
Citation: LI Jun’ao, LI Zhongyu, YANG Qing, et al. Dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR[J]. Journal of Radars, in press. doi: 10.12000/JR25024

Dual-channel Clutter Cancellation Processing Method via Space-time Decoupling for Airborne BiSAR

DOI: 10.12000/JR25024 CSTR: 32380.14.JR25024
Funds:  The National Natural Science Foundation of China (62171084, 62431008)
More Information
  • Clutter suppression is an important technology for moving target indication. However, for Bistatic Synthetic Aperture Radar (BiSAR) moving target indication, traditional space-time adaptive processing and displaced phase center antenna methods cannot achieve the expected clutter suppression because of the strong coupling nonlinearity and nonstationarity of clutter. To address the aforementioned challenge, this study proposes a dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR. The core lies in establishing the space-time decoupling matrix, which converts the strongly coupled nonlinear two-dimensional space-time spectrum of airborne BiSAR into that with consistent spatial frequency. The proposed method mainly consists of the following steps: (1) To improve the signal-to-clutter-plus-noise ratio of moving targets, the first-order Keystone transformation and high-order range migration correction function are applied to concentrate the energy of moving targets in the same range cell. (2) To weaken the azimuth spectrum expansion effect caused by the motion of bistatic platforms, the Doppler frequency rate term is compensated for each range cell. (3) To achieve clutter cancellation, the space-time decoupling matrix is introduced. The normalized Doppler frequency remains unchanged, and the clutter atoms on the airborne BiSAR space-time plane are linearly transformed into atomic positions with the same normalized spatial frequency. Then, the echo signals of dual channels are subtracted for effective clutter suppression. The effectiveness of the proposed method for airborne BiSAR clutter suppression is demonstrated through simulation and real data processing.

     

  • loading
  • [1]
    杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.

    YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
    [2]
    胡克彬. SAR高精度成像方法研究[D]. [博士论文], 电子科技大学, 2017.

    HU Kebin. Research on high-precision imaging methods for synthetic aperture radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    [3]
    张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.

    ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.
    [4]
    李中余. 双基地合成孔径雷达动目标检测与成像技术研究[D]. [博士论文], 电子科技大学, 2017.

    LI Zhongyu. Research on bistatic SAR moving target detection and imaging technology[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    [5]
    XIONG Tao, LI Yachao, LI Qi, et al. Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4765–4774. doi: 10.1109/TGRS.2020.3011420.
    [6]
    ZHAO Ye, ZHANG Ming, ZHAO Yanwei, et al. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4250–4258. doi: 10.1109/TGRS.2015.2393915.
    [7]
    LI Zhongyu, WU Junjie, YANG Jianyu, et al. Bistatic SAR Clutter Suppression: Theory, Method, and Experiment[M]. Singapore: Springer, 2022, 1–137. doi: 10.1007/978-981-19-0159-1.
    [8]
    LI Junao, LI Zhongyu, YANG Qing, et al. Joint clutter suppression and moving target indication in 2-D azimuth rotated time domain for single-channel bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202516. doi: 10.1109/TGRS.2023.3237553.
    [9]
    NOHARA T J, WEBER P, PREMJI A, et al. Airborne ground moving target indication using non-side-looking antennas[C]. 1998 IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197), Dallas, USA, 1998: 269–274. doi: 10.1109/NRC.1998.678013.
    [10]
    KLEMM R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1987, 134(3): 269–276. doi: 10.1049/ip-f-1.1987.0054.
    [11]
    YANG Zhaocheng, LI Xiang, WANG Hongqiang, et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1214–1218. doi: 10.1109/LGRS.2012.2236639.
    [12]
    KAN Qingyun, XU Jingwei, LIAO Guisheng, et al. Clutter characteristics analysis and range-dependence compensation for space-air bistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5101615. doi: 10.1109/TGRS.2023.3347547.
    [13]
    李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报(中英文), 待出版. 1–19. doi: 10.12000/JR24032.

    LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptive ANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. 1–19. doi: 10.12000/JR24032,
    [14]
    LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
    [15]
    穆慧琳. 多通道SAR地面运动目标检测与成像研究[D]. [博士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.

    MU Huilin. Research on ground moving target detection and imaging in multichannel SAR system[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.
    [16]
    张文鹏. 复杂条件下多通道SAR运动目标检测与参数估计方法研究[D]. [博士论文], 国防科技大学, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.

    ZHANG Wenpeng. Research of moving target detection and parameter estimation methods for multichannel SAR in complicated conditions[D]. [Ph.D. dissertation], National University of Defense Technology, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.
    [17]
    YANG Taoli, LI Zhenfang, SUO Zhiyong, et al. Performance analysis for multichannel HRWS SAR systems based on STAP approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1409–1413. doi: 10.1109/LGRS.2013.2258889.
    [18]
    GUERCI J R, GOLDSTEIN J S, REED I S. Optimal and adaptive reduced-rank STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647–663. doi: 10.1109/7.845255.
    [19]
    CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574.
    [20]
    CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260.
    [21]
    HOU Yingjie, WANG Junfeng, LIU Xingzhao, et al. An automatic SAR-GMTI algorithm based on DPCA[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 592–595. doi: 10.1109/IGARSS.2014.6946492.
    [22]
    XU Jia, HUANG Zuzhen, YAN Liang, et al. SAR ground moving target indication based on relative residue of DPCA processing[J]. Sensors, 2016, 16(10): 1676. doi: 10.3390/s16101676.
    [23]
    LI Zhongyu, LI Shanchuan, LIU Zhutian, et al. Bistatic forward-looking SAR MP-DPCA method for space-time extension clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6565–6579. doi: 10.1109/TGRS.2020.2977982.
    [24]
    WARD J. Space-time adaptive processing for airborne radar[C]. IEE Colloquium on Space-Time Adaptive Processing (Ref. No.1998/241), London, UK, 1998: 2/1–2/6. doi: 10.1049/ic:19980240.
    [25]
    HUANG Penghui, YANG Hao, XIA Xianggen, et al. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117422. doi: 10.1109/TGRS.2022.3204324.
    [26]
    HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. Multichannel sea clutter modeling for spaceborne early warning radar and clutter suppression performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8349–8366. doi: 10.1109/TGRS.2020.3039495.
    [27]
    HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109721. doi: 10.1109/TGRS.2022.3144668.
    [28]
    LV Mingjie and ZHOU Chen. Study on sea clutter suppression methods based on a realistic radar dataset[J]. Remote Sensing, 2019, 11(23): 2721. doi: 10.3390/rs11232721.
    [29]
    ZHANG Tianfu, DENG Yunkai, and WANG Yongliang. A novel joint dimensionality-reduced adaptive clutter suppression method for space-based early warning radar utilizing frequency diversity array[J]. IEEE Transactions on Radar Systems, 2024, 2: 1123–1134. doi: 10.1109/TRS.2024.3483772.
    [30]
    WANG Yumiao, ZHAO Wenjing, WANG Xiang, et al. Nonhomogeneous sea clutter suppression using complex-valued U-Net model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027705. doi: 10.1109/LGRS.2022.3214633.
    [31]
    JI Yuanzheng, LIU Aijun, SONG Zhen, et al. HFSWR clutter suppression and target detection method based on RRN and exponential weight control[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3507305. doi: 10.1109/LGRS.2024.3417486.
    [32]
    HUA Qinglong, YUN Zhang, MU Huilin, et al. An approach of sea clutter suppression for SAR images by self-supervised complex-valued deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4512505. doi: 10.1109/LGRS.2022.3183582.
    [33]
    邓云凯, 王宇. 先进双基SAR技术研究[J]. 雷达学报, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.

    DENG Yunkai and WANG Yu. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.
    [34]
    陈士超, 邢孟道, 张双喜, 等. 一种串行双基SAR的SIFT成像算法[J]. 雷达学报, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.

    CHEN Shichao, XING Mengdao, ZHANG Shuangxi, et al. A SIFT algorithm for bistatic SAR imaging in spaceborne constant-offset configuration[J]. Journal of Radars, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.
    [35]
    刘裕洲, 蔡天倚, 李亚超, 等. 联合距离方位二维NCS的星弹双基前视SAR成像算法[J]. 雷达学报, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.

    LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
    [36]
    武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.

    WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
    [37]
    LI Zhongyu, WU Junjie, YI Qingying, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000–1016. doi: 10.1109/TAES.2014.130539.
    [38]
    LIU Zhutian, YE Hongda, LI Zhongyu, et al. Optimally matched space-time filtering technique for BFSAR nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210617. doi: 10.1109/TGRS.2021.3090462.
    [39]
    LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on Kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
    [40]
    ZHU Daiyin, LI Yong, and ZHU Zhaoda. A keystone transform without interpolation for sar ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147.
    [41]
    WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840.
    [42]
    WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599.
    [43]
    SCHöNEMANN P H. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1): 1–10. doi: 10.1007/BF02289451.
    [44]
    SKOLNIK M I. Radar Handbook[M]. New York: McGraw, 1970, 262–304.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(574) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint