Citation: | ZHENG Guanfeng, XING Xuemin, XU Wendong, et al. Estimation of InSAR time-series deformation for soft-soil highways considering cyclic loading[J]. Journal of Radars, in press. doi: 10.12000/JR25012 |
[1] |
张成相. 交通荷载作用下软土地基附加沉降计算[J]. 现代交通技术, 2017, 14(5): 16–18. doi: 10.3969/j.issn.1672-9889.2017.05.005.
ZHANG Chengxiang. Additional settlement calculation for soft soil foundation under traffic loading[J]. Modern Transportation Technology, 2017, 14(5): 16–18. doi: 10.3969/j.issn.1672-9889.2017.05.005.
|
[2] |
王强. 循环荷载作用下广州软土长期累积变形特性试验研究[J]. 安全与环境工程, 2022, 29(4): 205–210, 219. doi: 10.13578/j.cnki.issn.1671-1556.20211040.
WANG Qiang. Experimental study on long-term cumulative deformation of Guangzhou soft clay under cyclic loads[J]. Safety and Environmental Engineering, 2022, 29(4): 205–210, 219. doi: 10.13578/j.cnki.issn.1671-1556.20211040.
|
[3] |
贺彬. 交通荷载引起的多向耦合应力路径下软粘土变形特性研究[D]. [硕士论文], 哈尔滨工业大学, 2018. doi: 10.7666/d.D01589759.
HE Bin. Study on deformation characteristics of soft clay under multi-directional coupled stress path caused by traffic load[D]. [Master dissertation], Harbin Institute of Technology, 2018. doi: 10.7666/d.D01589759.
|
[4] |
FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661.
|
[5] |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375–2383. doi: 10.1109/TGRS.2002.803792.
|
[6] |
ZHANG Lei, LU Zhong, DING Xiaoli, et al. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012, 117: 429–439. doi: 10.1016/j.rse.2011.10.020.
|
[7] |
LV Xiaolei, YAZÍCÍ B, ZEGHAL M, et al. Joint-scatterer processing for time-series InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7205–7221. doi: 10.1109/TGRS.2014.2309346.
|
[8] |
CHEN Qiang, CHENG Haiqin, YANG Yinghui, et al. Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR[J]. Remote Sensing of Environment, 2014, 152: 125–135. doi: 10.1016/j.rse.2014.06.002.
|
[9] |
FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460–3470. doi: 10.1109/TGRS.2011.2124465.
|
[10] |
云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报, 2020, 9(1): 73–85. doi: 10.12000/JR20007.
YUN Ye, LÜ Xiaolei, FU Xikai, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1): 73–85. doi: 10.12000/JR20007.
|
[11] |
贾洪果, 刘国祥, 于冰. 基于超短基线PSInSAR的道路网沉降监测[J]. 测绘通报, 2012(5): 24–28.
JIA Hongguo, LIU Guoxiang, and YU Bing. Monitoring subsidence along road network by ultrashort baseline PSInSAR[J]. Bulletin of Surveying and Mapping, 2012(5): 24–28.
|
[12] |
YU Bing, LIU Guoxiang, ZHANG Rui, et al. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery[J]. Journal of Modern Transportation, 2013, 21(4): 236–246. doi: 10.1007/s40534-013-0030-y.
|
[13] |
张庆云, 张景发, 刘国林, 等. 基于高级InSAR时序分析方法的高速公路沉降分析[J]. 科学技术与工程, 2018, 18(20): 20–26. doi: 10.3969/j.issn.1671-1815.2018.20.004.
ZHANG Qingyun, ZHANG Jingfa, LIU Guolin, et al. Highway subsidence analysis based on the advanced InSAR time series analysis method[J]. Science Technology and Engineering, 2018, 18(20): 20–26. doi: 10.3969/j.issn.1671-1815.2018.20.004.
|
[14] |
赵富萌, 张毅, 孟兴民, 等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质, 2020, 47(1): 142–152. doi: 10.16030/j.cnki.issn.1000-3665.201902020.
ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 142–152. doi: 10.16030/j.cnki.issn.1000-3665.201902020.
|
[15] |
秦晓琼, 杨梦诗, 王寒梅, 等. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用[J]. 测绘学报, 2016, 45(6): 713–721. doi: 10.11947/j.AGCS.2016.20150440.
QIN Xiaoqiong, YANG Mengshi, WANG Hanmei, et al. Application of high-resolution PS-InSAR in deformation characteristics probe of urban rail transit[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 713–721. doi: 10.11947/j.AGCS.2016.20150440.
|
[16] |
XING Xuemin, WEN Debao, CHANG H C, et al. Highway deformation monitoring based on an integrated CRInSAR algorithm-simulation and real data validation[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(11): 1850036. doi: 10.1142/S0218001418500362.
|
[17] |
XING Xuemin, CHANG H C, CHEN Lifu, et al. Radar interferometry time series to investigate deformation of soft clay subgrade settlement-a case study of Lungui Highway, China[J]. Remote Sensing, 2019, 11(4): 429. doi: 10.3390/rs11040429.
|
[18] |
LAZECKÝ M, RAPANT P, PERISSIN D, et al. Deformations of highway over undermined Ostrava-Svinov area monitored by InSAR using limited set of SAR images[J]. Procedia Technology, 2014, 16: 414–421. doi: 10.1016/j.protcy.2014.10.107.
|
[19] |
TAPETE D, MORELLI S, FANTI R, et al. Localising deformation along the elevation of linear structures: An experiment with space-borne InSAR and RTK GPS on the Roman Aqueducts in Rome, Italy[J]. Applied Geography, 2015, 58: 65–83. doi: 10.1016/j.apgeog.2015.01.009.
|
[20] |
张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012, 41(6): 864–869, 876.
ZHANG Yonghong, HU Hong’an, and SUN Guangtong. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaeticaet Cartographica Sinica, 2012, 41(6): 864–869, 876.
|
[21] |
朱茂, 沈体雁, 吕凤华, 等. 青岛胶州湾跨海大桥InSAR形变数据分解和信息提取[J]. 遥感学报, 2020, 24(7): 883–893. doi: 10.11834/jrs.20208085.
ZHU Mao, SHEN Tiyan, LYU Fenghua, et al. InSAR deformation data decomposition and information analysis of Jiaozhou bay bridge, Qingdao[J]. Journal of Remote Sensing (Chinese), 2020, 24(7): 883–893. doi: 10.11834/jrs.20208085.
|
[22] |
FERRETTI A, PRATI C, and ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202–2212. doi: 10.1109/36.868878.
|
[23] |
ZHU Yikai, XING Xuemin, CHEN Lifu, et al. Ground subsidence investigation in Fuoshan, China, based on SBAS-InSAR technology with TerraSAR-X images[J]. Applied Sciences, 2019, 9(10): 2038. doi: 10.3390/app9102038.
|
[24] |
RATEB A and KUO C Y. Quantifying vertical deformation in the Tigris-Euphrates basin due to the groundwater abstraction: Insights from GRACE and Sentinel-1 satellites[J]. Water, 2019, 11(8): 1658. doi: 10.3390/w11081658.
|
[25] |
ZHAO Rong, LI Zhiwei, FENG Guangcai, et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184: 276–287. doi: 10.1016/j.rse.2016.07.019.
|
[26] |
YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model[J]. Remote Sensing, 2017, 9(2): 125. doi: 10.3390/rs9020125.
|
[27] |
ZHU Yikai, XING Xuemin, YUAN Zhihui, et al. Surface deformation retrieving over soft clay based on an improved time series InSAR model: A case study of Dongting Lake Area, China[J]. IEEE Access, 2020, 8: 195703–195720. doi: 10.1109/ACCESS.2020.3033381.
|
[28] |
XING Xuemin, ZHU Yikai, XU Wenbin, et al. Measuring subsidence over soft clay highways using a novel time-series InSAR deformation model with an emphasis on rheological properties and environmental factors (NREM)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4601319. doi: 10.1109/TGRS.2022.3154430.
|
[29] |
CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Measuring thermal expansion using X-band persistent scatterer interferometry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100: 84–91. doi: 10.1016/j.isprsjprs.2014.05.006.
|
[30] |
黄其欢, 丁幼亮, 王一安, 等. 基于InSAR的南京大胜关大桥纵向位移监测与分析[J]. 东南大学学报(自然科学版), 2017, 47(3): 584–589. doi: 10.3969/j.issn.1001-0505.2017.03.028.
HUANG Qihuan, DING Youliang, WANG Yian, et al. InSAR-based longitudinal displacement monitoring and analysis on Nanjing Dashengguan bridge[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(3): 584–589. doi: 10.3969/j.issn.1001-0505.2017.03.028.
|
[31] |
TANG Xiaochao, STOFFELS S M, and PALOMINO A M. Mechanistic-empirical approach to characterizing permanent deformation of reinforced soft soil subgrade[J]. Geotextiles and Geomembranes, 2016, 44(3): 429–441. doi: 10.1016/j.geotexmem.2015.06.004.
|
[32] |
NIE Rusong, MEI Huihao, LENG Wuming, et al. Characterization of permanent deformation of fine-grained subgrade soil under intermittent loading[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106395. doi: 10.1016/j.soildyn.2020.106395.
|
[33] |
刘维正, 石志国, 章定文, 等. 交通荷载作用下结构性软土地基长期沉降计算[J]. 东南大学学报(自然科学版), 2018, 48(4): 726–735. doi: 10.3969/j.issn.1001-0505.2018.04.020.
LIU Weizheng, SHI Zhiguo, ZHANG Dingwen, et al. Long-term settlement calculation of structured soft clay foundation under traffic loading[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 726–735. doi: 10.3969/j.issn.1001-0505.2018.04.020.
|
[34] |
胡安峰, 张晓冬, 贾玉帅, 等. 饱和软土路基长期沉降计算研究[J]. 岩土工程学报, 2013, 35(S2): 788–792.
HU Anfeng, ZHANG Xiaodong, JIA Yushuai, et al. Permanent settlement of subgrade of saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 788–792.
|
[35] |
魏星, 黄茂松. 交通荷载作用下公路软土地基长期沉降的计算[J]. 岩土力学, 2009, 30(11): 3342–3346. doi: 10.3969/j.issn.1000-7598.2009.11.021.
WEI Xing and HUANG Maosong. A simple method to predict traffic-load-induced permanent settlement of road on soft subsoil[J]. Rock and Soil Mechanics, 2009, 30(11): 3342–3346. doi: 10.3969/j.issn.1000-7598.2009.11.021.
|
[36] |
DE JESÚS RUBIO J. Stability analysis of the modified Levenberg-Marquardt algorithm for the artificial neural network training[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3510–3524. doi: 10.1109/TNNLS.2020.3015200.
|
[37] |
张鸿燕, 耿征. Levenberg-Marquardt算法的一种新解释[J]. 计算机工程与应用, 2009, 45(19): 5–8. doi: 10.3778/j.issn.1002-8331.2009.19.002.
ZHANG Hongyan and GENG Zheng. Novel interpretation for Levenberg-Marquardt algorithm[J]. Computer Engineering and Applications, 2009, 45(19): 5–8. doi: 10.3778/j.issn.1002-8331.2009.19.002.
|
[38] |
孙磊, 王军, 谷川, 等. 循环偏应力和循环围压耦合效应对饱和软黏土变形特性的影响[J]. 岩土工程学报, 2015, 37(12): 2198–2204. doi: 10.11779/CJGE201512009.
SUN Lei, WANG Jun, GU Chuan, et al. Coupling effects of cyclic deviator stress and cyclic confining pressure on deformation behaviour of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2198–2204. doi: 10.11779/CJGE201512009.
|
[39] |
LI Dingqing and SELIG E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1996, 122(12): 1006–1013. doi: 10.1061/(ASCE)0733-9410(1996)122:12(1006.
|
[40] |
QIN Xiaoqiong, ZHANG Lu, DING Xiaoli, et al. Mapping and characterizing thermal dilation of civil infrastructures with multi-temporal X-band synthetic aperture radar interferometry[J]. Remote Sensing, 2018, 10(6): 941. doi: 10.3390/rs10060941.
|
[41] |
杨从锐, 钱谦, 王锋, 等. 改进的自适应遗传算法在函数优化中的应用[J]. 计算机应用研究, 2018, 35(4): 1042–1045. doi: 10.3969/j.issn.1001-3695.2018.04.018.
YANG Congrui, QIAN Qian, WANG Feng, et al. Application of improved adaptive genetic algorithm in function optimization[J]. Application Research of Computers, 2018, 35(4): 1042–1045. doi: 10.3969/j.issn.1001-3695.2018.04.018.
|
[42] |
KATOCH S, CHAUHAN S S, and KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091–8126. doi: 10.1007/s11042-020-10139-6.
|
[43] |
祝强, 李少康, 徐臻. LM算法求解大残差非线性最小二乘问题研究[J]. 中国测试, 2016, 42(3): 12–16. doi: 10.11857/j.issn.1674-5124.2016.03.003.
ZHU Qiang, LI Shaokang, and XU Zhen. Study of solving nonlinear least squares under large residual based on Levenberg-Marquardt algorithm[J]. China Measurement & Test, 2016, 42(3): 12–16. doi: 10.11857/j.issn.1674-5124.2016.03.003.
|
[44] |
薛树强, 杨元喜, 党亚民. 测距定位方程非线性平差的封闭牛顿迭代公式[J]. 测绘学报, 2014, 43(8): 771–777. doi: 10.13485/j.cnki.11-2089.2014.0127.
XUE Shuqiang, YANG Yuanxi, and DANG Yamin. A closed-form of newton iterative formula for nonlinear adjustment of distance equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 771–777. doi: 10.13485/j.cnki.11-2089.2014.0127.
|
[45] |
XING Xuemin, ZHU Lingjie, LIU Bin, et al. Measuring land surface deformation over soft clay area based on an FIPR SAR interferometry algorithm-a case study of Beijing capital international airport (China)[J]. Remote Sensing, 2022, 14(17): 4253. doi: 10.3390/rs14174253.
|
[46] |
朱凌杰. 软土地基公路时序InSAR形变建模及参数估计[D]. [硕士论文], 长沙理工大学, 2022. doi: 10.26985/d.cnki.gcsjc.2022.001483.
ZHU Lingjie. Deformation modeling and parameter estimation based on time series InSAR technique over soft clay highway[D]. [Master dissertation], Changsha University of Science & Technology, 2022. doi: 10.26985/d.cnki.gcsjc.2022.001483.
|
[47] |
朱珺, 朱凌杰, 邢学敏, 等. 洞庭湖软土区域时序InSAR形变与环境物理参数联合估计方法[J]. 测绘学报, 2023, 52(12): 2127–2140. doi: 10.11947/j.AGCS.2023.20220287.
ZHU Jun, ZHU Lingjie, XING Xuemin, et al. Joint estimation method of time-series InSAR deformation and environmental physical parameters for soft clay area over Dongting lake[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2127–2140. doi: 10.11947/j.AGCS.2023.20220287.
|
[48] |
白林, 李振洪, 宋莎, 等. 利用时序InSAR技术反演邯郸平原区地表形变与含水层参数[J]. 地球物理学报, 2022, 65(9): 3351–3362. doi: 10.6038/cjg2022P0845.
BAI Lin, LI Zhenhong, SONG Sha, et al. Estimation of the land deformation and aquifer parameters in the Handan plain using multi-temporal InSAR technology[J]. Chinese Journal of Geophysics, 2022, 65(9): 3351–3362. doi: 10.6038/cjg2022P0845.
|
[49] |
国家测绘地理信息局. CH/T 6006-2018 时间序列InSaR地表形变监测数据处理规范[S]. 北京: 中国标准出版社, 2018.
National Administration of Surveying, Mapping and Geoinformation. CH/T 6006-2018 Specification of time series InSAR data processing for ground deformation monitoring[S]. Beijing: Standards Press of China, 2018.
|
[50] |
GAO Mingli, GONG Huili, LI Xiaojuan, et al. Land subsidence and ground fissures in Beijing capital international airport (BCIA): Evidence from Quasi-PS InSAR analysis[J]. Remote Sensing, 2019, 11(12): 1466. doi: 10.3390/rs11121466.
|
[51] |
JAWAD A A, ALMUHANNA R R, and SHABAN A M. Three-dimensional finite element analysis for determining subgrade reaction modulus of subgrade soils[C]. Fourth Scientific Conference for Engineering and Postgraduate Research, Baghdad, Iraq, 2020: 012137. doi: 10.1088/1757-899X/745/1/012137.
|
[52] |
中华人民共和国交通运输部. JTG D30-2015公路路基设计规范[S]. 北京: 人民交通出版社, 2015.
Ministry of Transport of the People’s Republic of China. JTG D30-2015 Specifications for design of highway subgrades[S]. Beijing: China Communications Press, 2015.
|
[53] |
李进军, 黄茂松, 王育德. 交通荷载作用下软土地基累积塑性变形分析[J]. 中国公路学报, 2006, 19(1): 1–5. doi: 10.3321/j.issn:1001-7372.2006.01.001.
LI Jinjun, HUANG Maosheng, and WANG Yude. Analysis of cumulative plastic deformation of soft clay foundation under traffic loading[J]. China Journal of Highway and Transport, 2006, 19(1): 1–5. doi: 10.3321/j.issn:1001-7372.2006.01.001.
|
[54] |
魏连雨, 李巧茹. 标准轴载当量作用次数预估与误差分析[J]. 重庆交通大学学报(自然科学版), 1999, 18(1): 55–60.
WEI Lianyu and LI Qiaoru. Estimation of equivalent standard axleload and error analysis[J]. Journal of Chongqing Jiaotong University (Natural Science), 1999, 18(1): 55–60.
|
[55] |
张越, 杨红磊, 马建国, 等. 一种地基合成孔径雷达提取DEM的方法[J]. 测绘科学, 2018, 43(11): 125–130. doi: 10.16251/j.cnki.1009-2307.2018.11.020.
ZHANG Yue, YANG Honglei, MA Jianguo, et al. A method for extracting DEM from ground SAR[J]. Science of Surveying and Mapping, 2018, 43(11): 125–130. doi: 10.16251/j.cnki.1009-2307.2018.11.020.
|
[56] |
邓永和. InSAR测高精度的精密公式[J]. 大地测量与地球动力学, 2010, 30(1): 92–94. doi: 10.3969/j.issn.1671-5942.2010.01.020.
DENG Yonghe. Precision formulae of height measurement accuracy with InSAR[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 92–94. doi: 10.3969/j.issn.1671-5942.2010.01.020.
|
[57] |
GRAHAM J, CROOKS J H A, and BELL A L. Time effects on the stress-strain behaviour of natural soft clays[J]. Géotechnique, 1983, 33(3): 327–340. doi: 10.1680/geot.1983.33.3.327.
|
[58] |
CANNAVÓ F. Sensitivity analysis for volcanic source modeling quality assessment and model selection[J]. Computers & Geosciences, 2012, 44: 52–59. doi: 10.1016/j.cageo.2012.03.008.
|