Turn off MathJax
Article Contents
ZHANG Yongchao, SUN Zhenyu, CAI Xiaochun, et al. A hyperparameter-free total variation regularization method for real aperture radar angular super-resolution[J]. Journal of Radars, in press. doi: 10.12000/JR25011
Citation: ZHANG Yongchao, SUN Zhenyu, CAI Xiaochun, et al. A hyperparameter-free total variation regularization method for real aperture radar angular super-resolution[J]. Journal of Radars, in press. doi: 10.12000/JR25011

A Hyperparameter-free Total Variation Regularization Method for Real Aperture Radar Angular Super-resolution

DOI: 10.12000/JR25011 CSTR: 32380.14.JR25011
Funds:  The National Natural Science Foundation of China (62471103, 62301131), Natural Science Foundation for Distinguished Young Scholars of Sichuan, China (2023NSFSC1970), Municipal Government of Quzhou (2023D026, 2024D004)
More Information
  • Corresponding author: ZHANG Yongchao, yongchaozhang@uestc.edu.cn
  • Received Date: 2025-01-13
  • Rev Recd Date: 2025-06-14
  • Available Online: 2025-06-24
  • A real aperture radar has physical space limitations that result in a wide antenna beam, leading to low angular resolution. The angular super-resolution method based on sparse reconstruction introduces sparse prior constraints of the target under a regularization framework and reconstructs the target reflectivity function through iterative optimization, thereby significantly enhancing the angular resolution of the radar. However, existing sparse reconstruction methods primarily consider the sparse distribution characteristics of strong point targets, neglecting the contour information of extended targets, which results in distortion in the recovery of target edges. Additionally, these methods are sensitive to one or more hyperparameters introduced into the cost function. Thus, meticulous manual adjustments are essential in practical applications, and they pose challenges in terms of the adaptive selection of hyperparameters in dynamic scenarios. To address these issues, this paper proposes a hyperparameter-free Total Variation (TV) regularization angular super-resolution method. First, a square-root Least Absolute Shrinkage and Selection Operator (LASSO) cost function was established to characterize the fitting residuals between the scan echo sequence and target reflectivity function and to characterize the sparse constraints on the target edge gradients. Using this function, the target contour reconstruction problem was transformed into a non-smooth convex optimization problem under TV regularization constraints. The analytical expression of the hyperparameter-free TV regularization term was derived based on the covariance fitting criterion. Finally, a Generalized Iteratively Reweighted Least Squares (GIRLS) strategy was proposed, and an iterative optimization method for solving the non-smooth convex optimization problem of square-root LASSO was derived. The simulation and experimental results demonstrate that the proposed method improves angular resolution of the radar while preserving the contour information of the target without requiring manual adjustment of the hyperparameters.

     

  • loading
  • [1]
    STIMSON G W. Introduction to airborne radar[M]. 2nd ed. Mendham, USA: SciTech, 1998.
    [2]
    杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099.

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099.
    [3]
    李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119.

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
    [4]
    陈洪猛, 余继周, 张文杰, 等. 基于概率模型驱动的机载贝叶斯前视超分辨多目标成像方法[J]. 雷达学报, 2023, 12(6): 1125–1137. doi: 10.12000/JR23080.

    CHEN Hongmeng, YU Jizhou, ZHANG Wenjie, et al. Probability model-driven airborne Bayesian forward-looking super-resolution imaging for multitarget scenario[J]. Journal of Radars, 2023, 12(6): 1125–1137. doi: 10.12000/JR23080.
    [5]
    丁义元, 杨建宇, 张卫华, 等. 改进实孔径雷达角分辨力的广义逆滤波方法[J]. 电子学报, 1993, 21(9): 15–19. doi: 10.3321/j.issn:0372-2112.1993.09.003.

    DING Yiyuan, YANG Jianyu, ZHANG Weihua, et al. Improvement of angular resolution of real aperture radar via generalized inverse filtering[J]. Acta Electronica Sinica, 1993, 21(9): 15–19. doi: 10.3321/j.issn:0372-2112.1993.09.003.
    [6]
    ZHANG Yongchao, ZHANG Yin, LI Wenchao, et al. Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 127–144. doi: 10.1109/TGRS.2017.2743263.
    [7]
    李悦丽, 梁甸农, 黄晓涛. 一种单脉冲雷达多通道解卷积前视成像方法[J]. 信号处理, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013.

    LI Yueli, LIANG Diannong, and HUANG Xiaotao. A multi-channel deconvolution based on forword-looking imaging method in monopulse radar[J]. Signal Processing, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013.
    [8]
    ZHANG Yongchao, LUO Jiawei, ZHANG Yongwei, et al. Resolution enhancement for large-scale real beam mapping based on adaptive low-rank approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5116921. doi: 10.1109/TGRS.2022.3202073.
    [9]
    MIGLIACCIO M and GAMBARDELLA A. Microwave radiometer spatial resolution enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1159–1169. doi: 10.1109/TGRS.2005.844099.
    [10]
    TUO Xingyu, ZHANG Yin, HUANG Yulin, et al. Fast sparse-TSVD super-resolution method of real aperture radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6609–6620. doi: 10.1109/TGRS.2020.3027053.
    [11]
    GAMBARDELLA A and MIGLIACCIO M. On the superresolution of microwave scanning radiometer measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 796–800. doi: 10.1109/LGRS.2008.2006285.
    [12]
    ZHANG Qiping, ZHANG Yin, HUANG Yulin, et al. TV-sparse super-resolution method for radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6534–6549. doi: 10.1109/TGRS.2020.2977719.
    [13]
    JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966.
    [14]
    GOLUB G H, HEATH M, and WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751.
    [15]
    STOICA P, BABU P, and LI Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35–47. doi: 10.1109/TSP.2010.2086452.
    [16]
    MAO Deqing, YANG Jianyu, TUO Xing, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [17]
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO: A retrospective[J]. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x.
    [18]
    STOICA P, ZACHARIAH D, and LI Jian. Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation[J]. Digital Signal Processing, 2014, 33: 1–12. doi: 10.1016/j.dsp.2014.06.010.
    [19]
    TUO Xingyu, ZHANG Yin, HUANG Yulin, et al. A fast sparse azimuth super-resolution imaging method of real aperture radar based on iterative reweighted least squares with linear sketching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2928–2941. doi: 10.1109/JSTARS.2021.3061430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(95) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint