HE Jun, FU Ruigang, and FU Qiang. Review of automatic target recognition evaluation method development[J]. Journal of Radars, 2023, 12(6): 1215–1228. doi: 10.12000/JR23094
Citation: ZHANG Yin, ZHANG Ping, TUO Xingyu, et al. Sparse targets angular super-resolution reconstruction method under unknown antenna pattern errors for scanning radar[J]. Journal of Radars, 2024, 13(3): 646–666. doi: 10.12000/JR23208

Sparse Targets Angular Super-resolution Reconstruction Method under Unknown Antenna Pattern Errors for Scanning Radar

DOI: 10.12000/JR23208
Funds:  The Natural Science Foundation of Sichuan Province (2023NSFSC1970, 2022NSFSC0950), The Municipal Government of Quzhou under Grant Number (2022D0011, 2022D036, 2023D026)
More Information
  • Corresponding author: ZHANG Yin, yinzhang@uestc.edu.cn
  • Received Date: 2023-10-29
  • Rev Recd Date: 2024-02-17
  • Available Online: 2024-03-02
  • Publish Date: 2024-03-15
  • Scanning radar angular super-resolution technology is based on the relationship between the target and antenna pattern, and a deconvolution method is used to obtain angular resolution capabilities beyond the real beam. Most current angular super-resolution methods are based on ideal distortion-free antenna patterns and do not consider pattern changes in the actual process due to the influence of factors such as radar radome, antenna measurement errors, and non-ideal platform motion. In practice, an antenna pattern often has unknown errors, which can result in reduced target resolution and even false target generation. To address this problem, this paper proposes an angular super-resolution imaging method for airborne radar with unknown antenna errors. First, based on the Total Least Square (TLS) criterion, this paper considers the effect of the pattern error matrix and derive the corresponding objective function. Second, this paper employs the iterative reweighted optimization method to solve the objective function by adopting an alternative iteration solution idea. Finally, an adaptive parameter update method is introduced for algorithm hyperparameter selection. The simulation and experimental results demonstrate that the proposed method can achieve super-resolution reconstruction even in the presence of unknown antenna errors, promoting the robustness of the super-resolution algorithm.

     

  • [1]
    Rigelsford J. Introduction to airborne radar[J]. Sensor Review, 2002, 22(3): 265–266.
    [2]
    张良, 祝欢, 吴涛. 机载预警雷达系统架构发展路径研究[J]. 现代雷达, 2015, 37(12): 11–18. doi: 10.16592/j.cnki.1004-7859.2015.12.003.

    ZHANG Liang, ZHU Huan, and WU Tao. A study on the evolution way of the system architecture of AEW radar[J]. Modern Radar, 2015, 37(12): 11–18. doi: 10.16592/j.cnki.1004-7859.2015.12.003.
    [3]
    CLARKE J, 徐映和, 译. 英国预警雷达的发展概况[J]. 现代雷达, 1987, 9(2): 1–6. doi: 10.16592/j.cnki.1004-7859.1987.02.001.

    CLARKE J, XU Yinghe, translation. Overview of the development of early warning radar in the UK[J]. Modern Radar, 1987, 9(2): 1–6. doi: 10.16592/j.cnki.1004-7859.1987.02.001.
    [4]
    ZHANG Qiping, ZHANG Yin, HUANG Yulin, et al. TV-sparse super-resolution method for radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6534–6549. doi: 10.1109/TGRS.2020.2977719.
    [5]
    LING Hao. Novel radar techniques and applications[J]. IEEE Antennas and Propagation Magazine, 2018, 60(1): 132–134. doi: 10.1109/MAP.2017.2776153.
    [6]
    BEKKADAL F. Novel radar technology and applications[C]. 17th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 2003: 6–12. doi: 10.1109/ICECOM.2003.1290942.
    [7]
    ZHANG Yongchao, ZHANG Yin, LI Wenchao, et al. Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 127–144. doi: 10.1109/TGRS.2017.2743263.
    [8]
    ZHANG Yongchao, JAKOBSSON A, ZHANG Yin, et al. Wideband sparse reconstruction for scanning radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6055–6068. doi: 10.1109/TGRS.2018.2830100.
    [9]
    CHEN Rui, LI Wenchao, LI Kefeng, et al. A super-resolution scheme for multichannel radar forward-looking imaging considering failure channels and motion error[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3501305. doi: 10.1109/LGRS.2023.3234264.
    [10]
    KANG Yao, ZHANG Yin, MAO Deqing, et al. Bayesian azimuth super-resolution of sea-surface target in forward-looking imaging[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266692.
    [11]
    CHEN Hongmeng, WANG Zeyu, ZHANG Yingjie, et al. Data-driven airborne Bayesian forward-looking superresolution imaging based on generalized Gaussian distribution[J]. Frontiers in Signal Processing, 2023, 3: 1093203. doi: 10.3389/frsip.2023.1093203.
    [12]
    MAO Deqing, ZHANG Yin, ZHANG Yongchao, et al. Super-resolution Doppler beam sharpening method using fast iterative adaptive approach-based spectral estimation[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015020. doi: 10.1117/1.JRS.12.015020.
    [13]
    LIU Sijia and PAN Minghai. Research on a forward-looking scanning imaging algorithm for a high-speed radar platform[J]. IET Signal Processing, 2023, 17(6): e12221. doi: 10.1049/sil2.12221.
    [14]
    MAO Deqing, YANG Jianyu, TUO Xingyu, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [15]
    TUO Xingyu, MAO Deqing, ZHANG Yin, et al. Radar forward-looking super-resolution imaging using a two-step regularization strategy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4218–4231. doi: 10.1109/JSTARS.2023.3270309.
    [16]
    YOUNG P. Alternative Recursive Approaches to Time-series Analysis[M]. YOUNG P. Recursive Estimation and Time-Series Analysis: An Introduction. Berlin, Heidelberg: Springer, 1984: 205–230.
    [17]
    RICHARDS M A. Iterative noncoherent angular superresolution (radar)[C]. 1988 IEEE National Radar Conference, Ann Arbor, USA, 1988: 100–105. doi: 10.1109/NRC.1988.10940.
    [18]
    LI Dongye, HUANG Yulin, and YANG Jianyu. Real beam radar imaging based on adaptive Lucy-Richardson algorithm[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1437–1440. doi: 10.1109/CIE-Radar.2011.6159830.
    [19]
    TAN Ke, LU Xingyu, YANG Jianchao, et al. A novel Bayesian super-resolution method for radar forward-looking imaging based on Markov random field model[J]. Remote Sensing, 2021, 13(20): 4115. doi: 10.3390/rs13204115.
    [20]
    CHEN Hongmeng, LI Yachao, GAO Wenquan, et al. Bayesian forward-looking super-resolution imaging using Doppler deconvolution in expanded beam space for high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105113. doi: 10.1109/TGRS.2021.3107717.
    [21]
    LI Weixin, LI Ming, ZUO Lei et al. A computationally efficient airborne forward-looking super-resolution imaging method based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5102613. doi: 10.1109/TGRS.2023.3260094.
    [22]
    CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278.
    [23]
    ZHANG Yongchao, LI Wenchao, ZHANG Yin, et al. A fast iterative adaptive approach for scanning radar angular superresolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5336–5345. doi: 10.1109/JSTARS.2015.2449090.
    [24]
    LI Yueli, LIU Jianguo, JIANG Xiaoqing, et al. Angular superresolution for signal model in coherent scanning radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3103–3116. doi: 10.1109/TAES.2019.2900133.
    [25]
    GAMBARDELLA A and MIGLIACCIO M. On the superresolution of microwave scanning radiometer measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 796–800. doi: 10.1109/LGRS.2008.2006285.
    [26]
    HUO Weibo, TUO Xingyu, ZHANG Yin, et al. Balanced tikhonov and total variation deconvolution approach for radar forward-looking super-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3505805. doi: 10.1109/LGRS.2021.3072389.
    [27]
    TANG Junkui, LIU Zheng, RAN Lei, et al. Enhancing forward-looking image resolution: Combining low-rank and sparsity priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5100812. doi: 10.1109/TGRS.2023.3237332.
    [28]
    KOZAKOFF D J. Analysis of radome-enclosed antennas[J]. Artech House, 1997 (685): 217–227.
    [29]
    PERSSON K and GUSTAFSSON M. Reconstruction of equivalent currents using a near-field data transformation-with radome applications[J]. Progress in Electromagnetics Research, 2005, 54: 179–198. doi: 10.2528/PIER04111602.
    [30]
    Fierro R D, Golub G H, Hansen P C, et al. Regularization by truncated total least squares[J]. SIAM Journal on Scientific Computing, 1997, 18(4): 1223–1241. doi: 10.1137/S106482759426383.
    [31]
    GOLUB G H, HEATH M, and WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751.
    [32]
    JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966.
    [33]
    ENGL H W. Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates[J]. Journal of optimization theory and applications, 1987, 52: 209–215. doi: 10.1007/BF00941281.
    [34]
    RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F.
  • Relative Articles

    [1]WANG Rongqing, XIE Jingyang, TIAN Biao, XU Shiyou, CHEN Zengping. Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2024, 13(6): 1337-1354. doi: 10.12000/JR24153
    [2]CHEN Hui, TIAN Xiang, LI Zihao, JIANG Xinrui. Reduced-dimension Target Parameter Estimation For Conformal FDA-MIMO Radar[J]. Journal of Radars, 2021, 10(6): 811-821. doi: 10.12000/JR21197
    [3]PAN Jie, WANG Shuai, LI Daojing, LU Xiaochun. High-resolution Wide-swath SAR Moving Target Imaging Technology Based on Distributed Compressed Sensing[J]. Journal of Radars, 2020, 9(1): 166-173. doi: 10.12000/JR19060
    [4]SONG Jiaqi, TAO Haihong. A Fast Parameter Estimation Algorithm for Near-field Non-circular Signals[J]. Journal of Radars, 2020, 9(4): 632-639. doi: 10.12000/JR20053
    [5]JIANG Wen, LI Wangzhe. A New Method for Parameter Estimation of Attributed Scattering Centers Based on Amplitude-phase Separation[J]. Journal of Radars, 2019, 8(5): 606-615. doi: 10.12000/JR18097
    [6]MA Jiazhi, SHI Longfei, XU Zhenhai, WANG Xuesong. Overview of Multi-source Parameter Estimation and Jamming Mitigation for Monopulse Radars[J]. Journal of Radars, 2019, 8(1): 125-139. doi: 10.12000/JR18093
    [7]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [8]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [9]Gong Pengcheng, Liu Gang, Huang He, Wang Wenqin. Multidimensional Parameter Estimation Method Based on Sparse Iteration in FDA-MIMO Radar[J]. Journal of Radars, 2018, 7(2): 194-201. doi: 10.12000/JR16121
    [10]Qian Lichang, Xu Jia, Hu Guoxu. Long-time Integration of a Multi-waveform for Weak Target Detection in Non-cooperative Passive Bistatic Radar[J]. Journal of Radars, 2017, 6(3): 259-266. doi: 10.12000/JR16137
    [11]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [12]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [13]Zhong Jinrong, Wen Gongjian. Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning(in English)[J]. Journal of Radars, 2016, 5(1): 99-108. doi: 10.12000/JR15056
    [14]Yun Yajiao, Qi Xiangyang, Li Ning. Moving Ship SAR Imaging Based on Parameter Estimation[J]. Journal of Radars, 2016, 5(3): 326-332. doi: 10.12000/JR15104
    [15]Ma Jing-tao, Tao Hai-hong, Xie Jian, Yang Jie. Rotating Interferometer-based Algorithm for Parameter Estimation of Near-field Source[J]. Journal of Radars, 2015, 4(3): 287-294. doi: 10.12000/JR14146
    [16]Li Hai, Zhang Zhi-qiang, Zhou Meng. A Novel Detection and Parameter Estimation Method of Airborne Phased Array Radar for Maneuvering Target Based on Wigner-Ville Distributed[J]. Journal of Radars, 2015, 4(4): 393-400. doi: 10.12000/JR15094
    [17]Tian Rui-qi, Bao Qing-long, Wang Ding-he, Chen Zeng-ping. An Algorithm for Target Parameter Estimation Based on Fractional Fourier and Keystone Transforms[J]. Journal of Radars, 2014, 3(5): 511-517. doi: 10.3724/SP.J.1300.2014.14058
    [18]Chen Gong-bo, Li Yong, Tao Man-yi. Data Based Parameter Estimation Method for Circular-scanning SAR Imaging[J]. Journal of Radars, 2013, 2(2): 203-209. doi: 10.3724/SP.J.1300.2013.20073
    [19]Zhu Ying, Zhang Gong, Zhang Jin-dong. Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing[J]. Journal of Radars, 2012, 1(2): 143-148. doi: 10.3724/SP.J.1300.2012.20016
    [20]Zheng Ming-jie, Yan He, Zhang Bing-chen, Zhao Feng-jun, Yang Ru-liang. A Novel Method of Moving Target Detection and Parameters Estimation for Dual-channel WAS Radar Based on DBS Image[J]. Journal of Radars, 2012, 1(1): 36-42. doi: 10.3724/SP.J.1300.2013.20007
  • Cited by

    Periodical cited type(4)

    1. 饶云华,潘登,朱华梁,万显荣,易建新,龚子平,柯亨玉. 基于一次反射的室内WiFi辐射源单站定位方法. 太赫兹科学与电子信息学报. 2021(04): 672-677 .
    2. 何振宇,陈武,杨扬. GPS天-地无源双基地雷达探测海面移动目标. 测绘学报. 2020(12): 1523-1534 .
    3. 周明章,姚广涛,孙海信,陈清峰,齐洁,古叶. WiFi信号外辐射源雷达双目标检测的研究. 舰船电子对抗. 2016(02): 1-4+33 .
    4. 杨小琪,姜卫东,霍凯. 基于OFDM信号的无源雷达干扰抑制方法. 雷达科学与技术. 2016(04): 364-370 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.1 %FULLTEXT: 18.1 %META: 72.1 %META: 72.1 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.0 %其他: 0.0 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Slovakia (SLOVAK Republic): 0.2 %Slovakia (SLOVAK Republic): 0.2 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.0 %United States: 0.0 %[]: 0.8 %[]: 0.8 %上海: 0.3 %上海: 0.3 %中卫: 0.0 %中卫: 0.0 %丹东: 0.1 %丹东: 0.1 %佛山: 0.0 %佛山: 0.0 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.0 %保定: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.1 %北京: 12.1 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %大邱: 0.1 %大邱: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.4 %太原: 0.4 %威海: 0.0 %威海: 0.0 %孟买: 0.2 %孟买: 0.2 %宝鸡市: 0.0 %宝鸡市: 0.0 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.2 %宿迁: 0.2 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %广安: 0.1 %广安: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.9 %张家口: 0.9 %张家口市: 0.0 %张家口市: 0.0 %成都: 0.8 %成都: 0.8 %新乡: 0.5 %新乡: 0.5 %新泽西: 0.2 %新泽西: 0.2 %新泽西州: 0.1 %新泽西州: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.7 %杭州: 0.7 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.3 %深圳: 0.3 %渭南: 0.0 %渭南: 0.0 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.2 %湛江: 0.2 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.3 %石家庄: 0.3 %石家庄市: 0.0 %石家庄市: 0.0 %纽约: 0.4 %纽约: 0.4 %美国: 0.0 %美国: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 20.0 %芒廷维尤: 20.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.0 %苏州: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 37.8 %西宁: 37.8 %西安: 0.4 %西安: 0.4 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.2 %贵港: 0.2 %运城: 0.3 %运城: 0.3 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 1.3 %郑州: 1.3 %重庆: 0.0 %重庆: 0.0 %长春: 0.4 %长春: 0.4 %长沙: 0.2 %长沙: 0.2 %青岛: 0.0 %青岛: 0.0 %首尔: 0.2 %首尔: 0.2 %马德里: 0.0 %马德里: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaIndiaSlovakia (SLOVAK Republic)Taiwan, ChinaUnited States[]上海中卫丹东佛山佳木斯保定包头北京南京南昌台北台州合肥吉林呼和浩特哈尔滨大邱天津太原威海孟买宝鸡市宣城宿迁巴中常州广安广州张家口张家口市成都新乡新泽西新泽西州昆明杭州武汉沈阳济南淮南淮安深圳渭南湘潭湛江漯河烟台焦作玉林石家庄石家庄市纽约美国美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州西宁西安西雅图贵港运城连云港邯郸郑州重庆长春长沙青岛首尔马德里齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(684) PDF downloads(138) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint