Volume 12 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WANG Yanfei, LI Heping, and HAN Song. Synthetic aperture imaging of antenna array coded[J]. Journal of Radars, 2023, 12(1): 1–12. doi: 10.12000/JR23011
Citation: WANG Yanfei, LI Heping, and HAN Song. Synthetic aperture imaging of antenna array coded[J]. Journal of Radars, 2023, 12(1): 1–12. doi: 10.12000/JR23011

Synthetic Aperture Imaging of Antenna Array Coded

doi: 10.12000/JR23011
Funds:  The National Ministries Foundation, The CAS Technical Support Talents Project
More Information
  • Corresponding author: WANG Yanfei, yfwang@mail.ie.ac.cn
  • Received Date: 2023-01-26
  • Rev Recd Date: 2023-02-18
  • Available Online: 2023-02-21
  • Publish Date: 2023-02-22
  • The theoretical azimuth resolution of Synthetic Aperture Radar (SAR) is half the antenna length, presenting conflicting requirements on the antenna for SAR high-resolution and long-distance imaging. In this paper, a method for antenna array coding synthetic aperture imaging is proposed. By dividing long antennas into subarrays to work together, the space energy utilization rate can be improved, a high resolution of the small antennas of the subarrays and a high gain of the long antennas of the whole array are achieved, and the problem that it is difficult to balance high-resolution and far-distance imaging is solved. On the basis of introducing the basic concept of array coding, the imaging model and processing flow of array coding radar are given, and the system performance metrics, such as resolution, signal-to-noise ratio, Pulse Repetition Frequency (PRF), and range-azimuth ambiguity, are theoretically analyzed and discussed. In a flight test experiment, a 0.5 m antenna is divided into four sub-arrays, and a strip-map image with a resolution of 0.1 m and a swath width of 8 km is obtained, which breaks the restriction of small-area imaging when traditional SAR adopts the spotlight mode to achieve high resolution. This new method effectively solves the limitations of traditional SAR and extends the signal dimension, providing a technical basis for enhancing radar system capability. Theoretical analysis and experimental results verify the considerable advantages and engineering implementation feasibility of the proposed method.

     

  • loading
  • [1]
    张澄波. 综合孔径雷达[M]. 北京: 科学出版社, 1989.

    ZHANG Chengbo. Synthetic Aperture Radar[M]. Beijing: Science Press, 1989.
    [2]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [3]
    CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991.
    [4]
    CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [5]
    JAKOWATZ C V JR, WAHL D E, EICHEL P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. New York: Springer, 1996.
    [6]
    MITTERMAYER J, LORD R, and BORNER E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. The 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1462–1464.
    [7]
    PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/TGRS.2009.2027701
    [8]
    SUN Guangcai, XING Mengdao, WANG Yong, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1036–1040. doi: 10.1109/LGRS.2011.2151174
    [9]
    唐禹, 王岩飞, 张冰尘. 滑动聚束SAR成像模式研究[J]. 电子与信息学报, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00585

    TANG Yu, WANG Yanfei, and ZHANG Bingchen. A study of sliding spotlight SAR imaging mode[J]. Journal of Electronics &Information Technology, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00585
    [10]
    ENDER J H G. MIMO-SAR[C]. International Radar Symposium, Cologne, Germany, 2007: 580–588.
    [11]
    CRISTALLINI D, PASTINA D, and LOMBARDO P. Exploiting MIMO SAR potentialities with efficient cross-track constellation configurations for improved range resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 38–52. doi: 10.1109/TGRS.2010.2053715
    [12]
    WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030
    [13]
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
    [14]
    周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074

    ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074
    [15]
    SABRY R and GELING G W. A new approach for radar/SAR target detection and imagery based on MIMO system concept and adaptive space-time coding[R]. DRDC Ottawa TM 2007-087, 2007.
    [16]
    武其松, 井伟, 邢孟道, 等. MIMO-SAR大测绘带成像[J]. 电子与信息学报, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959

    WU Qisong, JING Wei, XING Mengdao, et al. Wide swath imaging with MIMO-SAR[J]. Journal of Electronics &Information Technology, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959
    [17]
    FAROOQ J, TEMPLE M A, and SAVILLE M A. Application of frequency diverse arrays to synthetic aperture radar imaging[C]. 2007 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2007: 447–449.
    [18]
    FAROOQ J, TEMPLE M A, and SAVILLE M A. Exploiting frequency diverse array processing to improve SAR image resolution[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–5.
    [19]
    CHEN Zhen, ZHANG Zhimin, ZHOU Yashi, et al. Elevated frequency diversity array: A novel approach to high resolution and wide swath imaging for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4001505. doi: 10.1109/LGRS.2020.3021043
    [20]
    ZHOU Yashi, WANG Wei, CHEN Zhen, et al. High-resolution and wide-swath SAR imaging mode using frequency diverse planar array[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 321–325. doi: 10.1109/lgrs.2020.2974041
    [21]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4145–4159. doi: 10.1109/TGRS.2019.2961324
    [22]
    朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188
    [23]
    王岩飞, 李和平, 韩松. 雷达脉冲编码理论方法及应用[J]. 雷达学报, 2019, 8(1): 1–16. doi: 10.12000/JR19023

    WANG Yanfei, LI Heping, and HAN Song. The theory and method of pulse coding for radar and its applications[J]. Journal of Radars, 2019, 8(1): 1–16. doi: 10.12000/JR19023
    [24]
    张庆君, 韩晓磊, 刘杰. 星载合成孔径雷达遥感技术进展及发展趋势[J]. 航天器工程, 2017, 26(6): 1–8. doi: 10.3969/j.issn.1673-8748.2017.06.001

    ZHANG Qingjun, HAN Xiaolei, and LIU Jie. Technology progress and development trend of spaceborne synthetic aperture radar remote sensing[J]. Spacecraft Engineering, 2017, 26(6): 1–8. doi: 10.3969/j.issn.1673-8748.2017.06.001
    [25]
    SKOLNIK M I. Radar Handbook[M]. 2nd ed. New York: McGraw-Hill, 1990.
    [26]
    COOK C E and BERNFELD M. Radar Signals: An Introduction to Theory and Application[M]. Amsterdam: Elsevier, 1967.
    [27]
    COSTAS J P. A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties[J]. Proceedings of the IEEE, 1984, 72(8): 996–1009. doi: 10.1109/PROC.1984.12967
    [28]
    KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. doi: 10.1109/TGRS.2007.905974
    [29]
    SKOLNIK M I, 左群声, 徐国良, 马林, 等译. 雷达系统导论[M]. 3版. 北京: 电子工业出版社, 2014.

    SKOLNIK M I, ZUO Qunsheng, XU Guoliang, MA Lin, et al. translation. Introduction to Radar Systems[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2014.
    [30]
    赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001

    ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001
    [31]
    袁赛柏, 金胜, 朱天林. MIMO雷达技术发展综述[J]. 现代雷达, 2017, 39(8): 5–8, 66. doi: 10.16592/j.cnki.1004-7859.2017.08.002

    YUAN Saibai, JIN Sheng, and ZHU Tianlin. The development review of MIMO radar technology[J]. Modern Radar, 2017, 39(8): 5–8, 66. doi: 10.16592/j.cnki.1004-7859.2017.08.002
    [32]
    PAPOULIS A. Signal Analysis[M]. New York: McGraw-Hill, 1977.
    [33]
    王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089

    WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1267) PDF downloads(248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint