LIU Pingyu, LYU Xiaode, LIU Zhongsheng, et al. Research on co-channel interference suppression method for passive radar based on the jiont processing of primary and reference channels[J]. Journal of Radars, 2020, 9(6): 974–986. doi: 10.12000/JR19047
Citation: KANG Jian, TONG Fengyu, BAI Yusong, et al. SAR time series despeckling based on additive signal component decomposition in logarithm domain[J]. Journal of Radars, 2023, 12(5): 1031–1043. doi: 10.12000/JR22242

SAR Time Series Despeckling Based on Additive Signal Component Decomposition in Logarithm Domain

DOI: 10.12000/JR22242
Funds:  The National Natural Science Foundation of China (62101371), Jiangsu Province Science Foundation for Youths (BK20210707)
More Information
  • With the substantial improvement of Synthetic Aperture Radar (SAR) regarding swath width and spatial and temporal resolutions, a time series obtained by registering SAR images acquired at different times can provide more accurate information on the dynamic changes in the observed areas. However, inherent speckle noise and outliers along the temporal dimension in the time series pose serious challenges for subsequent interpretation tasks. Although existing state-of-the-art methods can effectively suppress the speckle noise in a SAR time series, outliers along the temporal dimension will interfere with the denoising results. To better solve this problem, this paper proposes an additive signal decomposition method in the logarithm domain that can suppress the speckle noise and separate stable data and outliers along the temporal dimension in a time series, thus eliminating the impact of outliers on the denoising results. When the simulated data are disturbed by outliers, the proposed method can achieve an approximately 3 dB improvement in the Peak Signal-to-Noise Ratio (PSNR) compared to the other state-of-the-art methods. On Sentinel-1 data, the proposed method robustly suppresses the speckle noise in a time series, and the obtained outliers along the temporal dimension provide reference data for subsequent interpretation tasks.

     

  • [1]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2]
    邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10. doi: 10.3724/SP.J.1300.2012.20015

    DENG Yunkai, ZHAO Fengjun, and WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10. doi: 10.3724/SP.J.1300.2012.20015
    [3]
    陈杰, 杨威, 王亚敏, 等. 高时相星载序贯SAR图像运动目标检测方法[J]. 雷达学报, 2022, 11(6): 1048–1060. doi: 10.12000/JR22184

    CHEN Jie, YANG Wei, WANG Yamin, et al. Moving target monitoring algorithm based on high-frame-rate SAR images[J]. Journal of Radars, 2022, 11(6): 1048–1060. doi: 10.12000/JR22184
    [4]
    XUE Feiyang, LV Xiaolei, DOU Fangjia, et al. A review of time-series interferometric SAR techniques: A tutorial for surface deformation analysis[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 22–42. doi: 10.1109/MGRS.2019.2956165
    [5]
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
    [6]
    ARGENTI F, LAPINI A, BIANCHI T, et al. A tutorial on speckle reduction in synthetic aperture radar images[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(3): 6–35. doi: 10.1109/MGRS.2013.2277512
    [7]
    VASILE G, TROUVE E, LEE J S, et al. Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1609–1621. doi: 10.1109/TGRS.2005.864142
    [8]
    LEE J S, GRUNES M R, and GRANDI G D. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363–2373. doi: 10.1109/36.789635
    [9]
    BIOUCAS-DIAS J M and FIGUEIREDO M A T. Multiplicative noise removal using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(7): 1720–1730. doi: 10.1109/TIP.2010.2045029
    [10]
    DALSASSO E, YANG Xiangli, DENIS L, et al. SAR image despeckling by deep neural networks: From a pre-trained model to an end-to-end training strategy[J]. Remote Sensing, 2020, 12(16): 2636. doi: 10.3390/rs12162636
    [11]
    XIONG Kai, ZHAO Guanghui, WANG Yingbin, et al. SPB-Net: A deep network for SAR imaging and despeckling with downsampled data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9238–9256. doi: 10.1109/TGRS.2020.3034102
    [12]
    MOLINI A B, VALSESIA D, FRACASTORO G, et al. Speckle2Void: Deep self-supervised SAR despeckling with blind-spot convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204017. doi: 10.1109/TGRS.2021.3065461
    [13]
    DELEDALLE C A, DENIS L, POGGI G, et al. Exploiting patch similarity for SAR image processing: The nonlocal paradigm[J]. IEEE Signal Processing Magazine, 2014, 31(4): 69–78. doi: 10.1109/MSP.2014.2311305
    [14]
    XU Gang, GAO Yandong, LI Jinwei, et al. InSAR phase denoising: A review of current technologies and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 64–82. doi: 10.1109/MGRS.2019.2955120
    [15]
    QUEGAN S, LE TOAN T, YU Jiongjiong, et al. Multitemporal ERS SAR analysis applied to forest mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 741–753. doi: 10.1109/36.842003
    [16]
    TROUVE E, CHAMBENOIT Y, CLASSEAU N, et al. Statistical and operational performance assessment of multitemporal SAR image filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2519–2530. doi: 10.1109/TGRS.2003.817270
    [17]
    SU Xin, DELEDALLE C A, TUPIN F, et al. Two-step multitemporal nonlocal means for synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6181–6196. doi: 10.1109/TGRS.2013.2295431
    [18]
    FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460–3470. doi: 10.1109/TGRS.2011.2124465
    [19]
    CHIERCHIA G, EL GHECHE M, SCARPA G, et al. Multitemporal SAR image despeckling based on block-matching and collaborative filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5467–5480. doi: 10.1109/TGRS.2017.2707806
    [20]
    PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586
    [21]
    ZHAO Weiying, DELEDALLE C A, DENIS L, et al. Ratio-based multitemporal SAR images denoising: RABASAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3552–3565. doi: 10.1109/TGRS.2018.2885683
    [22]
    BAIER G, HE Wei, and YOKOYA N. Robust nonlocal low-rank SAR time series despeckling considering speckle correlation by total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7942–7954. doi: 10.1109/TGRS.2020.2985400
    [23]
    CHAMBOLLE A and POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1/2): 120–145. doi: 10.1007/s10851-010-0251-1
    [24]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [25]
    FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [26]
    DELEDALLE C A, DENIS L, TABTI S, et al. MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4389–4403. doi: 10.1109/TIP.2017.2713946
    [27]
    WANG Yilun, YANG Junfeng, YIN Wotao, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 248–272. doi: 10.1137/080724265
    [28]
    PARIKH N and BOYD S. Proximal algorithms[J]. Foundations and Trends ® in Optimization, 2014, 1(3): 127–239. doi: 10.1561/2400000003
  • Relative Articles

    [1]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [2]HE Jun, FU Ruigang, FU Qiang. Review of Automatic Target Recognition Evaluation Method Development[J]. Journal of Radars, 2023, 12(6): 1215-1228. doi: 10.12000/JR23094
    [3]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [4]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [5]YU Wenxian. Automatic Target Recognition from an Engineering Perspective(in English)[J]. Journal of Radars, 2022, 11(5): 737-752. doi: 10.12000/JR22178
    [6]SUN Hao, CHEN Jin, LEI Lin, JI Kefeng, KUANG Gangyao. Adversarial Robustness of Deep Convolutional Neural Network-based Image Recognition Models: A Review[J]. Journal of Radars, 2021, 10(4): 571-594. doi: 10.12000/JR21048
    [7]ZHAO Pengfei, HUANG Lijia. Target Recognition Method for Multi-aspect Synthetic Aperture Radar Images Based on EfficientNet and BiGRU[J]. Journal of Radars, 2021, 10(6): 895-904. doi: 10.12000/JR20133
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, WEI Shunjun. High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network[J]. Journal of Radars, 2019, 8(6): 841-851. doi: 10.12000/JR19111
    [10]CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041
    [11]JIN Yaqiu. Multimode Remote Sensing Intelligent Information and Target Recognition: Physical Intelligence of Microwave Vision (in English)[J]. Journal of Radars, 2019, 8(6): 710-716. doi: 10.12000/JR19083
    [12]Su Ningyuan, Chen Xiaolong, Guan Jian, Mou Xiaoqian, Liu Ningbo. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018, 7(5): 565-574. doi: 10.12000/JR18077
    [13]Zhao Juanping, Guo Weiwei, Liu Bin, Cui Shiyong, Zhang Zenghui, Yu Wenxian. Convolutional Neural Network-based SAR Image Classification with Noisy Labels[J]. Journal of Radars, 2017, 6(5): 514-523. doi: 10.12000/JR16140
    [14]Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [15]Zhao Feixiang, Liu Yongxiang, Huo Kai. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder[J]. Journal of Radars, 2017, 6(2): 149-156. doi: 10.12000/JR16151
    [16]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [17]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]HAN Ping, WANG Huan. Synthetic Aperture Radar Target Feature Extraction and Recognition Based on Improved Sparsity Preserving Projections[J]. Journal of Radars, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [20]Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 59.9 %META: 59.9 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %其他: 0.7 %其他: 0.7 %Algeria: 0.2 %Algeria: 0.2 %Canada: 0.2 %Canada: 0.2 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %France: 0.1 %France: 0.1 %Germany: 0.1 %Germany: 0.1 %India: 0.0 %India: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Netherlands: 0.1 %Netherlands: 0.1 %San Jose: 0.1 %San Jose: 0.1 %San Mateo: 0.0 %San Mateo: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.7 %United States: 0.7 %[]: 0.5 %[]: 0.5 %上海: 4.3 %上海: 4.3 %东京: 0.2 %东京: 0.2 %东京都: 0.0 %东京都: 0.0 %东莞: 0.1 %东莞: 0.1 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %亳州: 0.0 %亳州: 0.0 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.0 %内江: 0.0 %凉山: 0.1 %凉山: 0.1 %北京: 9.9 %北京: 9.9 %十堰: 0.1 %十堰: 0.1 %南京: 3.8 %南京: 3.8 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %卡尔加里: 0.0 %卡尔加里: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %印度西孟加拉: 0.1 %印度西孟加拉: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.3 %合肥: 0.3 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.0 %嘉兴: 0.0 %塔斯卡卢萨: 0.2 %塔斯卡卢萨: 0.2 %夏洛特: 0.1 %夏洛特: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.0 %太原: 0.0 %奥尔巴尼: 0.0 %奥尔巴尼: 0.0 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %安庆: 0.0 %安庆: 0.0 %安康: 0.0 %安康: 0.0 %安阳: 0.0 %安阳: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.0 %密蘇里城: 0.0 %岳阳: 0.0 %岳阳: 0.0 %巴塞罗那: 0.0 %巴塞罗那: 0.0 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.3 %广州: 1.3 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.0 %廊坊: 0.0 %延边: 0.1 %延边: 0.1 %开封: 0.2 %开封: 0.2 %弗吉: 0.0 %弗吉: 0.0 %张家口: 1.1 %张家口: 1.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %德里: 0.1 %德里: 0.1 %怀化: 0.1 %怀化: 0.1 %成都: 2.4 %成都: 2.4 %扬州: 0.6 %扬州: 0.6 %抚州: 0.0 %抚州: 0.0 %新乡: 0.0 %新乡: 0.0 %新余: 0.2 %新余: 0.2 %无锡: 0.3 %无锡: 0.3 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %杭州: 0.6 %杭州: 0.6 %松原: 0.0 %松原: 0.0 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 1.4 %武汉: 1.4 %汉中: 0.0 %汉中: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沙特奈马拉布里: 0.0 %沙特奈马拉布里: 0.0 %泰安: 0.1 %泰安: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %济南: 0.3 %济南: 0.3 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湘潭: 0.3 %湘潭: 0.3 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 32.1 %芒廷维尤: 32.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 1.2 %苏州: 1.2 %菏泽: 0.0 %菏泽: 0.0 %蒙特利尔: 0.1 %蒙特利尔: 0.1 %衡阳: 0.0 %衡阳: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 12.8 %西宁: 12.8 %西安: 1.9 %西安: 1.9 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.1 %贵阳: 0.1 %资阳: 0.0 %资阳: 0.0 %赣州: 0.2 %赣州: 0.2 %运城: 0.7 %运城: 0.7 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %镇江: 0.6 %镇江: 0.6 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阿尔及尔省: 0.1 %阿尔及尔省: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %鹰潭: 0.0 %鹰潭: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他AlgeriaCanadaCentral DistrictChinaFranceGermanyIndiaKorea Republic ofNetherlandsSan JoseSan MateoSeattleSingaporeTaiwan, ChinaUnited States[]上海东京东京都东莞丹东乌鲁木齐亳州伦敦佛山六安兰州内江凉山北京十堰南京南充南昌卡尔加里卡拉奇印度西孟加拉厦门台北台州合肥呼伦贝尔呼和浩特咸阳哈尔滨嘉兴塔斯卡卢萨夏洛特大连天津太原奥尔巴尼威海娄底安庆安康安阳宝鸡宣城宿州密蘇里城岳阳巴塞罗那常州平顶山广州库比蒂诺廊坊延边开封弗吉张家口徐州德州德里怀化成都扬州抚州新乡新余无锡旧金山昆明晋城杭州松原株洲格兰特县桂林榆林武汉汉中沈阳沙特奈马拉布里泰安泰米尔纳德济南海口淮南深圳温州渭南湘潭湛江漯河烟台石家庄福州秦皇岛纽约绍兴芒廷维尤芝加哥苏州菏泽蒙特利尔衡阳襄阳西宁西安许昌诺沃克贵港贵阳资阳赣州运城邢台邯郸郑州鄂州重庆金华镇江长春长沙长治阿尔及尔省青岛香港香港特别行政区鹰潭龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1216) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint