
Citation: | QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181 |
合成孔径雷达(Synthetic Aperture Radar, SAR)具备全天候、全天时、远距离、高分辨率对地成像能力,已经成为现代微波遥感领域的重要技术手段之一[1]。获取陆海环境更高的分辨能力和更大的测绘范围一直是各种遥感手段不断突破的方向。方位向多通道体制以空间维度采样的增加消除分辨率和幅宽对时间维度采样率的矛盾制约[2],目前已经成为高分辨率宽幅SAR成像的主流技术手段之一,并成功应用于国内外多颗在轨SAR卫星,包括高分三号[3]、TerraSAR-X[4], RADARSAT-2[5]和ALOS-2[6]。
通道失配校正和多通道信号重建是方位多通道SAR信号处理的两个关键技术环节。多通道信号重建旨在对空间上非均匀分布的多个通道采样信号进行联合处理,得到等效于单通道SAR系统的空间维均匀采样信号[7]。在进行非均匀采样数据重建处理之前,多个通道接收回波的幅度、相位、延时等特性需要校正一致,以避免重建图像中出现干扰图像判读的“鬼影”虚假目标[8]。针对方位多通道SAR系统失配校正问题,德国宇航中心、西安电子科技大学、上海交通大学、中国科学院电子学研究所等国内外研究机构相继进行了大量研究,提出了多种处理方案[9–11]。
通道相位失配校正主要分为基于内定标系统的标定方法和基于回波数据的估计方法[12]。由于实际SAR系统中通道失配来源复杂,完全依靠内定标系统不仅代价高昂而且系统十分庞大[13]。基于回波数据的通道失配估计方法受到国内外学者的广泛研究[14]。通常来讲,通道间特性失配源于系统特性不理想,与成像场景无关,目前已经发展的通道失配校正方法也是基于此假设。但是,虽然失配特性不一致源于SAR系统特性,其造成的影响与场景特性却是紧密相关的,特别是起伏地形高程。目前发展的通道失配校正方法均未考虑地形起伏的影响,基于平地假设的校正方法在地形起伏明显的场景中,失配校正性能将受到很大影响。当前,高精度数字高程模型(Digital Elevation Model, DEM)重建技术经过国内外学者多年研究,已经逐渐成熟并得到广泛应用[15]。本文详细分析了方位向多通道SAR系统存在偏航、俯仰和地形起伏条件下的通道失配特点,给出运用辅助DEM信息进行补偿的解析表达式,针对仿真实验数据和机载4通道SAR实验数据开展处理工作,验证所提方法的有效性。
方位多通道SAR信号无模糊重建的基础是各天线子孔径沿航迹方向均匀排布。但是,在实际工作过程中,受高空气流和侧风的影响,天线基线常常偏离平台的飞行轨迹,平台姿态往往存在偏航、俯仰和横滚[16],如图1所示。在星载SAR系统中,地球自转等效于系统中存在一个固定偏航角。
其中,平台横滚角带来的影响主要是回波的接收增益发生变化,场景目标到多个通道天线相位中心的斜距变化是相同的,因此不会导致通道间的相位误差。天线偏航和俯仰不仅会导致波束在方位向指向发生改变,成像区域改变,而且会导致子孔径天线相位中心位置发生偏移[16]。天线相位中心偏移导致的相位差异在不同通道中是不同的,由此导致通道间的相位误差。
图2中,Y 轴指向平台前进方向,Z轴垂直地面向上,X轴形成右手直角坐标系,平台飞行高度H,
假设
Δx=LnsinθyawΔz=Lnsinθpitch} |
(1) |
目标T和校正前后辅通道的天线相位中心位置
T:(x,h)P:(0,H)¯P:(Δx,H+Δz)} |
(2) |
其中,
φ=2πλ(√(x−Δx)2+(H+Δz−h)2−√x2+(H−h)2) |
(3) |
其中,
x2+(H−h)2≫2xΔx+2(H−h)Δz≫Δx2+Δz2 |
(4) |
在上述假设条件下,将式(3)中的双曲形式泰勒级数展开至2次项可以得到
φ≈2πλ(−xΔx+(H−h)Δz√x2+(H−h)2) |
(5) |
基于成像几何关系,可以得到下视角
cosθlook=(H−h)√x2+(H−h)2sinθlook=x√x2+(H−h)2} |
(6) |
综上,将式(6)代入式(5)可以得到偏航角和俯仰角导致的通道间相位偏差
φ=2πLnλ(−sinθlooksinθyaw+cosθlooksinθpitch) |
(7) |
在机载SAR系统工作过程中,偏航和俯仰不断发生变化,通道间相位失配具有方位时变特性。同时,从式(7)可以看出,相位失配随场景地物对应的下视角变化,呈现距离向空变特点,因此式(7)可以重写为
φ(t,h)=2πLnλ(−sin(θlook(h))sin(θyaw(t))+cos(θlook(h))sin(θpitch(t))) |
(8) |
在地形起伏明显的区域,场景地物对应的下视角与平地假设下不同。如果采用简单的平地假设,针对存在高程起伏的地物,通道间相位失配补偿将出现错误,导致最终的重建图像中出现虚假目标。如图4所示,假设平台飞行高度为3000 m,场景中高程地物高出参考水平面300 m,建筑物顶端视角
基于辅助DEM的方位多通道SAR通道失配补偿流程如图5所示,具体处理步骤如下:
(1) 根据惯性测量单元(IMU)记录的3维速度信息,针对多通道回波数据进行1阶运动补偿,补偿之后认为参考通道处于理想直线航迹上;
(2) 在距离频域和方位时域进行2维自适应校正幅度误差,校正表达式如式(9)所示,其中
Sn+12(fr,t)=Sn2(fr,t)∫|S1(fr,t)|dt∫|Sn2(fr,t)|dtSn+22(fr,t)=Sn+12(fr,t)∫|S1(fr,t)|dfr∫|Sn+12(fr,t)|dfr} |
(9) |
(3) 进行距离压缩;
(4) 采用方位互相关方法[11]进行通道间延时误差校正;
(5) 在机载系统中,飞行姿态具有方位向时变特点,场景高程起伏也具有方位空变特点,采用方位向子孔径处理方式,假设子孔径内方位向高程不变,利用辅助DEM信息计算场景地物对应的下视角,并结合IMU记录的平台姿态数据校正距离空变、方位时变相位误差;
(6) 采用子空间投影方法[13]校正残余的非空变、非时变相位误差;
(7) 采用滤波器组方法[7]进行多通道信号重建,得到无模糊的单通道信号;
(8) 最后采用调频变标(CS)算法进行单通道数据成像处理,得到无模糊SAR图像。
为了验证本文算法有效性,分别开展仿真数据处理和机载多通道SAR试验数据处理。首先,参照实际飞行试验中采用的方位多通道机载SAR系统设置仿真实验,实验参数由表1给出。
系统参数 | 数值 |
通道数目 | 4 |
飞行高度(m) | 3000 |
平台速度(m/s) | 120 |
载频(GHz) | 5.4 |
发射信号带宽(MHz) | 210 |
脉冲重复频率(Hz) | 150 |
多普勒带宽(Hz) | 384 |
假设平台存在5°偏航角和3°俯仰角。在场景中设置5个点目标,等间距分布,位于中间位置的点目标高程为0,其他4个点目标分别设置不同的高度,如图6所示。
图7展示了仿真实验数据处理结果。图7(a)给出的是未进行通道失配校正的多通道信号重建结果。由于通道失配的影响,场景中5个点目标均存在明显的虚假目标,分别分布在真实目标方位向前后位置。由于虚假目标的位置与目标的最近斜距有关,对比A, B和C点不难发现位于距离向不同位置点目标的虚假目标与真实目标的间距不同。同时,对比B点和E点可以发现,由于高程的影响,位于相同地距位置的点目标在斜距图像中出现在不同距离门中。
图7(b)中给出平地假设条件下通道失配校正结果。可以发现,没有高程的B点虚假目标得到有效抑制。由于未考虑地形起伏影响,场景中A, C, D, E 4个点目标仍然存在可见的虚假目标。同时,高程较高的C点和E点,虚假目标强度明显高于高程较低的A点和D点。图7(c)中给出考虑地形起伏条件下通道失配校正结果。可以发现,场景中A, B, C, D, E 5个点目标对应的虚假目标均得到有效抑制。仿真实验中虚假目标抑制的定量评估结果在表2中给出。
目标 | 未校正 | 未考虑高程起伏 | 考虑高程起伏 |
A | –5 | –34 | –53 |
B | –7 | –50 | –50 |
C | –5 | –28 | –53 |
D | –6 | –37 | –51 |
E | –5 | –27 | –52 |
中国科学院电子学研究所自主研制C波段方位4通道机载SAR系统,于2017年7月在舟山开展飞行试验,主要系统参数在表3中给出。系统采用1发4收的工作方式,整个天线阵面发射信号,方位向均匀分成4个通道接收回波。图8给出飞行过程中偏航和俯仰角度。
系统参数 | 数值 |
通道数目 | 4 |
平台高度(m) | 3000 |
平台速度(m/s) | 129.64 |
载频(GHz) | 5.4 |
发射信号带宽(MHz) | 210 |
方位向天线尺寸(m) | 0.624 |
脉冲重复频率(Hz) | 137.19 |
图9展示了方位4通道机载SAR试验数据处理结果。图9(a)给出的是未进行通道失配校正的多通道信号重建结果。由于通道失配的影响,场景中存在明显的虚假目标,干扰图像的正常判读。特别是左岸煤炭码头停靠的干散货船,散射强度较大,对应的虚假目标非常明显。所选区域在方位向临海,虚假目标在平静的海面上尤其明显。图9(b)中给出平地假设条件下通道失配校正结果。可以发现,虚假目标的影响大大减弱。但是由于存在高程的山地影响,图像中强散射的目标仍然存在可见的虚假目标。图9(c)中给出考虑地形起伏条件下通道失配校正结果。可以发现,场景中虚假目标均得到有效抑制。
方位向多通道星载SAR是实现高分辨率宽幅成像的重要技术手段之一,机载方位多通道SAR是验证系统和算法有效性的必要手段。基于外部DEM辅助信息,本文提出一种适用于高程起伏条件下,方位多通道条带SAR系统的通道相位失配校正方法。仿真实验表明算法能够精确补偿平台姿态导致的通道相位失配。将本文算法应用于机载多通道SAR实验数据处理,在高程起伏区域获取了良好的通道一致性校正和重建处理结果,验证了本文算法的有效性。
[1] |
CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York, USA: Wiley, 1991: 115–320.
|
[2] |
GRIFFLTHS H D and MANCINI P. Ambiguity suppression in sars using adaptive array techniques[C]. 1991 IEEE International Symposium on Geoscience and Remote Sensing, Espoo, Finland, 1991. doi: 10.1109/IGARSS.1991.580292.
|
[3] |
KRIEGER G, HUBER S, VILLANO M, et al. CEBRAS: Cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015.
|
[4] |
MITTERMAYER J and MARTINEZ J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4077–4079. doi: 10.1109/IGARSS.2003.1295367.
|
[5] |
WEN Xuejiao, QIU Xiaolan, HAN Bing, et al. A range ambiguity suppression processing method for spaceborne SAR with up and down chirp modulation[J]. Sensors, 2018, 18(5): 1454. doi: 10.3390/s18051454
|
[6] |
MO Hongbo and ZENG Zhimin. Investigation of multichannel ScanSAR with up and down chirp modulation for range ambiguity suppression[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1130–1133. doi: 10.1109/IGARSS.2016.7729286.
|
[7] |
LIU Mingqian, ZHANG Bingchen, XU Zhongqiu, et al. Ambiguities suppression for azimuth multichannel SAR based on L2, q regularization with application to gaofen-3 ultra-fine stripmap mode[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1532–1544. doi: 10.1109/JSTARS.2020.3046366
|
[8] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[9] |
吴一戎. 稀疏微波成像提升雷达性能[J]. 科学世界, 2019(9): 106–111.
WU Yirong. Sparse microwave imaging improves radar performance[J]. Science World, 2019(9): 106–111.
|
[10] |
肖鹏, 吴有明, 于泽, 等. 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法[J]. 雷达学报, 2016, 5(1): 35–41. doi: 10.12000/JR16004
XIAO Peng, WU Youming, YU Ze, et al. Azimuth ambiguity suppression in SAR images based on compressive sensing recovery algorithm[J]. Journal of Radars, 2016, 5(1): 35–41. doi: 10.12000/JR16004
|
[11] |
FANG Jian, XU Zongben, JIANG Chenglong, et al. SAR range ambiguity suppression via sparse regularization[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012. doi: 10.1109/IGARSS.2012.6350582.
|
[12] |
田菁, 康利鸿, 孙希龙, 等. 稀疏微波成像技术在轨验证及应用探讨[J]. 通信学报, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263
TIAN Jing, KANG Lihong, SUN Xilong, et al. Experiment based on orbit satellite and application for sparse microwave imaging[J]. Journal on Communications, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263
|
[13] |
毕辉, 张冰尘, 洪文, 等. 基于复图像的稀疏SAR成像方法在高分三号数据上的验证[J]. 雷达学报, 2020, 9(1): 123–130. doi: 10.12000/JR19092
BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092
|
[14] |
XU Zhongqiu, LIU Mingqian, ZHOU Guoru, et al. An accurate sparse SAR imaging method for enhancing region-based features via nonconvex and TV regularization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 350–363. doi: 10.1109/JSTARS.2020.3034431
|
[15] |
BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3426–3440. doi: 10.1109/TGRS.2017.2671519
|
[16] |
ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834
|
[17] |
胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747
HU Changyu, WANG Ling, and ZHU Dongqiang. Sparse ISAR imaging exploiting dictionary learning[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747
|
[18] |
LI Feng, XIN Lei, GUO Yi, et al. A framework of mixed sparse representations for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1210–1221. doi: 10.1109/TGRS.2016.2621123
|
[19] |
LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
|
[20] |
APPLEBAUM L, HOWARD S D, SEARLE S, et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery[J]. Applied and Computational Harmonic Analysis, 2009, 26(2): 283–290. doi: 10.1016/j.acha.2008.08.002
|
[21] |
MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
|
[22] |
CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
|
1. | 孙宇,黄亮,赵俊三,常军,陈朋弟,成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测. 自然资源遥感. 2022(02): 97-104 . ![]() |
系统参数 | 数值 |
通道数目 | 4 |
飞行高度(m) | 3000 |
平台速度(m/s) | 120 |
载频(GHz) | 5.4 |
发射信号带宽(MHz) | 210 |
脉冲重复频率(Hz) | 150 |
多普勒带宽(Hz) | 384 |
目标 | 未校正 | 未考虑高程起伏 | 考虑高程起伏 |
A | –5 | –34 | –53 |
B | –7 | –50 | –50 |
C | –5 | –28 | –53 |
D | –6 | –37 | –51 |
E | –5 | –27 | –52 |
系统参数 | 数值 |
通道数目 | 4 |
平台高度(m) | 3000 |
平台速度(m/s) | 129.64 |
载频(GHz) | 5.4 |
发射信号带宽(MHz) | 210 |
方位向天线尺寸(m) | 0.624 |
脉冲重复频率(Hz) | 137.19 |