Volume 11 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181
Citation: QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181

Method of Range Ambiguity Suppression Combining Sparse Reconstruction and Matched Filtering

doi: 10.12000/JR21181
Funds:  National Key R&D Program of China (2018YFC1407200)
More Information
  • Corresponding author: HUANG Lijia, iecas8huanglijia@163.com
  • Received Date: 2021-11-17
  • Accepted Date: 2021-12-30
  • Rev Recd Date: 2021-12-29
  • Available Online: 2022-01-10
  • Publish Date: 2022-01-28
  • To a certain extent, SAR images are affected by range ambiguity due to antenna sidelobe characteristics and pulse operating system. The work of range ambiguity suppression focuses on SAR system design and signal processing. One type of idea tries to modify the way of transmitting and receiving to block the receiving of the ambiguous energy, such as multiple elevation beams and azimuth phase coding. The other ideas are algorithms that use signal processing technology to reduce the distance ambiguity energy in echo and image domains. This paper proposes a range ambiguity suppression method that combines sparse reconstruction and matched filtering. The method performs the sparse reconstruction of the ambiguity area, estimates the ambiguity area signal using the ambiguity area image and reconstruction matrix, separates it from the echo signal to obtain the primary image signal after range ambiguity suppression, and uses matched filtering to obtain the main area image. In this method, sparse reconstruction ensures the accuracy of fuzzy signal estimation, and matched filtering ensures the efficiency of imaging processing. Simulation results show that the proposed method can effectively suppress range ambiguity, with a suppression effect of 10 dB or higher, and it has a good ability to maintain the weak targets and the details of the main image.

     

  • loading
  • [1]
    CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York, USA: Wiley, 1991: 115–320.
    [2]
    GRIFFLTHS H D and MANCINI P. Ambiguity suppression in sars using adaptive array techniques[C]. 1991 IEEE International Symposium on Geoscience and Remote Sensing, Espoo, Finland, 1991. doi: 10.1109/IGARSS.1991.580292.
    [3]
    KRIEGER G, HUBER S, VILLANO M, et al. CEBRAS: Cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015.
    [4]
    MITTERMAYER J and MARTINEZ J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4077–4079. doi: 10.1109/IGARSS.2003.1295367.
    [5]
    WEN Xuejiao, QIU Xiaolan, HAN Bing, et al. A range ambiguity suppression processing method for spaceborne SAR with up and down chirp modulation[J]. Sensors, 2018, 18(5): 1454. doi: 10.3390/s18051454
    [6]
    MO Hongbo and ZENG Zhimin. Investigation of multichannel ScanSAR with up and down chirp modulation for range ambiguity suppression[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1130–1133. doi: 10.1109/IGARSS.2016.7729286.
    [7]
    LIU Mingqian, ZHANG Bingchen, XU Zhongqiu, et al. Ambiguities suppression for azimuth multichannel SAR based on L2, q regularization with application to gaofen-3 ultra-fine stripmap mode[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1532–1544. doi: 10.1109/JSTARS.2020.3046366
    [8]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [9]
    吴一戎. 稀疏微波成像提升雷达性能[J]. 科学世界, 2019(9): 106–111.

    WU Yirong. Sparse microwave imaging improves radar performance[J]. Science World, 2019(9): 106–111.
    [10]
    肖鹏, 吴有明, 于泽, 等. 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法[J]. 雷达学报, 2016, 5(1): 35–41. doi: 10.12000/JR16004

    XIAO Peng, WU Youming, YU Ze, et al. Azimuth ambiguity suppression in SAR images based on compressive sensing recovery algorithm[J]. Journal of Radars, 2016, 5(1): 35–41. doi: 10.12000/JR16004
    [11]
    FANG Jian, XU Zongben, JIANG Chenglong, et al. SAR range ambiguity suppression via sparse regularization[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012. doi: 10.1109/IGARSS.2012.6350582.
    [12]
    田菁, 康利鸿, 孙希龙, 等. 稀疏微波成像技术在轨验证及应用探讨[J]. 通信学报, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263

    TIAN Jing, KANG Lihong, SUN Xilong, et al. Experiment based on orbit satellite and application for sparse microwave imaging[J]. Journal on Communications, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263
    [13]
    毕辉, 张冰尘, 洪文, 等. 基于复图像的稀疏SAR成像方法在高分三号数据上的验证[J]. 雷达学报, 2020, 9(1): 123–130. doi: 10.12000/JR19092

    BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092
    [14]
    XU Zhongqiu, LIU Mingqian, ZHOU Guoru, et al. An accurate sparse SAR imaging method for enhancing region-based features via nonconvex and TV regularization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 350–363. doi: 10.1109/JSTARS.2020.3034431
    [15]
    BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3426–3440. doi: 10.1109/TGRS.2017.2671519
    [16]
    ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834
    [17]
    胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747

    HU Changyu, WANG Ling, and ZHU Dongqiang. Sparse ISAR imaging exploiting dictionary learning[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747
    [18]
    LI Feng, XIN Lei, GUO Yi, et al. A framework of mixed sparse representations for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1210–1221. doi: 10.1109/TGRS.2016.2621123
    [19]
    LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
    [20]
    APPLEBAUM L, HOWARD S D, SEARLE S, et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery[J]. Applied and Computational Harmonic Analysis, 2009, 26(2): 283–290. doi: 10.1016/j.acha.2008.08.002
    [21]
    MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
    [22]
    CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(942) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint