Citation: | WANG Wei, XU Huarong, WEI Hanyu, et al. Progressive building facade detection for regularizing array InSAR point clouds[J]. Journal of Radars, 2022, 11(1): 144–156. doi: 10.12000/JR21177 |
[1] |
JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
|
[2] |
曾涛, 温育涵, 王岩, 等. 合成孔径雷达参数化成像技术进展[J]. 雷达学报, 2021, 10(3): 327–341. doi: 10.12000/JR21004
ZENG Tao, WEN Yuhan, WANG Yan, et al. Research progress on synthetic aperture radar parametric imaging methods[J]. Journal of Radars, 2021, 10(3): 327–341. doi: 10.12000/JR21004
|
[3] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
|
[4] |
WANG Yifan, WU Shihao, HUANG Hui, et al. Patch-based progressive 3D point set upsampling[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5951–5960.
|
[5] |
WANG Yuanyuan and ZHU Xiaoxiang. Automatic feature-based geometric fusion of multiview TomoSAR point clouds in urban area[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 953–965. doi: 10.1109/JSTARS.2014.2361430
|
[6] |
RAMBOUR C, DENIS L, TUPIN F, et al. Urban surface reconstruction in SAR tomography by graph-cuts[J]. Computer Vision and Image Understanding, 2019, 188: 102791. doi: 10.1016/j.cviu.2019.07.011
|
[7] |
BARÁTH D and MATAS J. Progressive-X: Efficient, anytime, multi-model fitting algorithm[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3779–3787.
|
[8] |
KLUGER F, BRACHMANN E, ACKERMANN H, et al. CONSAC: Robust multi-model fitting by conditional sample consensus[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4633–4642.
|
[9] |
WANG Wei and GAO Wei. Efficient multi-plane extraction from massive 3D points for modeling large-scale urban scenes[J]. The Visual Computer, 2019, 35(5): 625–638. doi: 10.1007/s00371-018-1492-z
|
[10] |
FISCHLER M A and BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[M]. FISCHLER M A and FIRSCHEIN O. Readings in Computer Vision. Los Altos, USA: Morgan Kaufmann, 1987: 726–740.
|
[11] |
ZULIANI M, KENNEY C S, and MANJUNATH B S. The multiRANSAC algorithm and its application to detect planar homographies[C]. IEEE International Conference on Image Processing 2005, Genova, Italy, 2005: III-153.
|
[12] |
TOLDO R and FUSIELLO A. Robust multiple structures estimation with j-linkage[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 537–547.
|
[13] |
MAGRI L and FUSIELLO A. Robust multiple model fitting with preference analysis and low-rank approximation[C]. British Machine Vision Conference, Swansea, UK, 2015: 20.1–20.12.
|
[14] |
MAGRI L and FUSIELLO A. T-linkage: A continuous relaxation of j-linkage for multi-model fitting[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3954–3961.
|
[15] |
MAGRI L and FUSIELLO A. Fitting multiple heterogeneous models by multi-class cascaded t-linkage[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7452–7460.
|
[16] |
ISACK H and BOYKOV Y. Energy-based geometric multi-model fitting[J]. International Journal of Computer Vision, 2012, 97(2): 123–147. doi: 10.1007/s11263-011-0474-7
|
[17] |
PHAM T T, CHIN T J, YU Jin, et al. The random cluster model for robust geometric fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1658–1671. doi: 10.1109/TPAMI.2013.2296310
|
[18] |
CHIN T J, YU Jin, and SUTER D. Accelerated hypothesis generation for multistructure data via preference analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 625–638. doi: 10.1109/TPAMI.2011.169
|
[19] |
BARATH D and MATAS J. Multi-class model fitting by energy minimization and mode-seeking[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 229–245.
|
[20] |
BARATH D and MATAS J. Graph-Cut RANSAC[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Utah, USA, 2018: 6733–6741. doi: 10.1109/CVPR.2018.00704.
|
[21] |
BRACHMANN E and ROTHER C. Neural-guided RANSAC: Learning where to sample model hypotheses[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 4321–4330.
|
[22] |
ZHU Xiaoxiang and SHAHZAD M. Façade reconstruction using multi-view spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. doi: 10.1109/TGRS.2013.2273619
|
[23] |
SHAHZAD M and ZHU Xiaoxiang. Robust reconstruction of building facades for large areas using spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 752–769. doi: 10.1109/TGRS.2014.2327391
|
[24] |
BALLARD D H. Generalizing the Hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13(2): 111–122. doi: 10.1016/0031-3203(81)90009-1
|
[25] |
VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722–732. doi: 10.1109/TPAMI.2008.300
|
[26] |
HUTTENLOCHER D P, KLANDERMAN G A, and RUCKLIDGE W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850–863. doi: 10.1109/34.232073
|
[27] |
仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112
QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
|