Citation: | HU Xiaoning, WANG Bingnan, XIANG Maosheng, et al. InSAR elevation inversion method based on backprojection model with external DEM[J]. Journal of Radars, 2021, 10(3): 391–401. doi: 10.12000/JR20144 |
[1] |
WECHSLER S P. Uncertainties associated with digital elevation models for hydrologic applications: A review[J]. Hydrology and Earth System Sciences, 2007, 11(4): 1481–1500. doi: 10.5194/hess-11-1481-2007
|
[2] |
YANG Kang, SMITH L C, CHU V W, et al. A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5212–5224. doi: 10.1109/JSTARS.2015.2483483
|
[3] |
SHUKLA G, GARG R D, SRIVASTAVA H S, et al. Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states[J]. Geocarto International, 2018, 33(3): 240–259. doi: 10.1080/10106049.2016.1240721
|
[4] |
RUFINO G, MOCCIA A, and ESPOSITO S. DEM generation by means of ERS tandem data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1905–1912. doi: 10.1109/36.729362
|
[5] |
靳国旺, 徐青, 张红敏. 合成孔径雷达干涉测量[M]. 北京: 国防工业出版社, 2014: 169–183.
JIN Guowang, XU Qing, and ZHANG Hongmin. Synthetic Aperture Radar Interferometry[M]. Beijing: National Defense Industry Press, 2014: 169–183.
|
[6] |
SEYMOUR M S and CUMMING I G. InSAR terrain height estimation using low-quality sparse DEMs[C]. 3rd ERS Symposium, Florence, Italy, 1997: 421–426.
|
[7] |
LIAO Mingsheng, WANG Teng, LU Lijun, et al. Reconstruction of DEMs from ERS-1/2 Tandem data in mountainous area facilitated by SRTM data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2325–2335. doi: 10.1109/TGRS.2007.896546
|
[8] |
刘辉, 靳国旺, 张红敏, 等. DEM辅助的山区InSAR相位解缠[J]. 测绘科学技术学报, 2017, 34(2): 215–220. doi: 10.3969/j.issn.1673-6338.2017.02.019
LIU Hui, JIN Guowang, ZHANG Hongmin, et al. Phase unwrapping assisted by DEM of InSAR for mountainous terrain[J]. Journal of Geomatics Science and Technology, 2017, 34(2): 215–220. doi: 10.3969/j.issn.1673-6338.2017.02.019
|
[9] |
FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. doi: 10.1029/2005RG000183
|
[10] |
FUJISADA H, BAILEY G B, KELLY G G, et al. ASTER DEM performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2707–2714. doi: 10.1109/TGRS.2005.847924
|
[11] |
CRIPPEN R, BUCKLEY S, AGRAM P, et al. NASADEM global elevation model: Methods and progress[C]. XXIII ISPRS Congress, Prague, Czech Republic, 2016: 125–128. doi: 10.5194/isprsarchives-XLI-B4-125-2016.
|
[12] |
LIN Jianhe, LÜ Xiaolei, and LI Rui. Automatic registered back-projection approach based on object orientation for airborne repeat-track interferometric SAR[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1066–1076. doi: 10.1049/iet-rsn.2018.5053
|
[13] |
DUERSCH M I. Backprojection for synthetic aperture radar[D]. [Ph. D. dissertation], Brigham Young University, 2013.
|
[14] |
韦顺军, 师君, 张晓玲, 等. 基于曲面投影的毫米波InSAR数据成像方法[J]. 雷达学报, 2015, 4(1): 49–59. doi: 10.12000/JR14137
WEI Shunjun, SHI Jun, ZHANG Xiaoling, et al. Millimeter-wave interferometric synthetic aperture radar data imaging based on terrain surface projection[J]. Journal of Radars, 2015, 4(1): 49–59. doi: 10.12000/JR14137
|
[15] |
ZEBKER H. User-friendly InSAR products – do we need range-Doppler?[C]. 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–4.
|
[16] |
师君, 马龙, 韦顺军, 等. 基于导航数据的Ka波段InSAR成像处理与分析[J]. 雷达学报, 2014, 3(1): 19–27. doi: 10.3724/SP.J.1300.2014.13142
SHI Jun, MA Long, WEI Shunjun, et al. Ka-band InSAR imaging and analysis based on IMU data[J]. Journal of Radars, 2014, 3(1): 19–27. doi: 10.3724/SP.J.1300.2014.13142
|
[17] |
潘舟浩, 李道京, 刘波, 等. 基于BP算法和时变基线的机载InSAR数据处理方法研究[J]. 电子与信息学报, 2014, 36(7): 1585–1591. doi: 10.3724/SP.J.1146.2013.00715
PAN Zhouhao, LI Daojing, LIU Bo, et al. Processing of the airborne InSAR data based on the BP algorithm and the time-varying baseline[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1585–1591. doi: 10.3724/SP.J.1146.2013.00715
|
[18] |
韦顺军, 张晓玲, 师君, 等. 同空间后向投影InSAR成像及干涉相位提取方法[J]. 宇航学报, 2015, 36(3): 336–343. doi: 10.3873/j.issn.1000-1328.2015.03.013
WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. InSAR imaging and interferogram extraction-based the same space back-projection[J]. Journal of Astronautics, 2015, 36(3): 336–343. doi: 10.3873/j.issn.1000-1328.2015.03.013
|
[19] |
SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: Wiley. 1999.
|
[20] |
王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京: 科学出版社, 2002: 33–37.
WANG Chao, ZHANG Hong, and LIU Zhi. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002: 33–37.
|
[1] | LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001 |
[2] | LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043 |
[3] | WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105 |
[4] | DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002 |
[5] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[6] | GONG Zhihua, LI Kaiming, DUAN Pengwei, CHEN Chunjiang. Attitude and Orbital Coupled Modeling and Micro-Doppler Characteristics Analysis of the Projectile with Initial Disturbances[J]. Journal of Radars, 2023, 12(4): 793-803. doi: 10.12000/JR23026 |
[7] | TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033 |
[8] | HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169 |
[9] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[10] | DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161 |
[11] | CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068 |
[12] | XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084 |
[13] | CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041 |
[14] | DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006 |
[15] | Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040 |
[16] | Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130 |
[17] | Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009 |
[18] | Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110 |
[19] | Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079 |
[20] | Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102 |
1. | 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 . ![]() |