Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
Citation: HU Xiaoning, WANG Bingnan, XIANG Maosheng, et al. InSAR elevation inversion method based on backprojection model with external DEM[J]. Journal of Radars, 2021, 10(3): 391–401. doi: 10.12000/JR20144

InSAR Elevation Inversion Method Based on Backprojection Model with External DEM

DOI: 10.12000/JR20144
Funds:  The National Natural Science Foundation of China (62073306), Youth Innovation Promotion Association CAS, National Key R&D Program of China (2017YFC0822400)
More Information
  • Corresponding author: WANG Bingnan, wbn@mail.ie.ac.cn
  • Received Date: 2020-11-28
  • Rev Recd Date: 2021-03-29
  • Available Online: 2021-04-28
  • Publish Date: 2021-04-28
  • When Interferometric Synthetic Aperture Radar (InSAR) is used to obtain the Digital Elevation Model (DEM), highly sloped terrains will make interferometric fringes dense and increase the difficulty of phase unwrapping, which will affect the accuracy of phase unwrapping and elevation inversion. To solve this problem, an InSAR elevation inversion method based on BackProjection (BP) model with an external DEM is proposed. This model achieves imaging and InSAR DEM inversion in a uniform BP geographic space and introduces an external DEM as auxiliary information. These processes, in turn, can remove most phases of the terrain and reduce the density of interferometric fringes and phase wrapping. Additionally, the proposed method can avoid the procedures of image registration and phase unwrapping in most cases, which simplifies traditional InSAR processing and achieves high processing accuracy. A simulation experiment and X-band InSAR data processing were performed to verify the effectiveness of the proposed method.

     

  • [1]
    WECHSLER S P. Uncertainties associated with digital elevation models for hydrologic applications: A review[J]. Hydrology and Earth System Sciences, 2007, 11(4): 1481–1500. doi: 10.5194/hess-11-1481-2007
    [2]
    YANG Kang, SMITH L C, CHU V W, et al. A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5212–5224. doi: 10.1109/JSTARS.2015.2483483
    [3]
    SHUKLA G, GARG R D, SRIVASTAVA H S, et al. Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states[J]. Geocarto International, 2018, 33(3): 240–259. doi: 10.1080/10106049.2016.1240721
    [4]
    RUFINO G, MOCCIA A, and ESPOSITO S. DEM generation by means of ERS tandem data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1905–1912. doi: 10.1109/36.729362
    [5]
    靳国旺, 徐青, 张红敏. 合成孔径雷达干涉测量[M]. 北京: 国防工业出版社, 2014: 169–183.

    JIN Guowang, XU Qing, and ZHANG Hongmin. Synthetic Aperture Radar Interferometry[M]. Beijing: National Defense Industry Press, 2014: 169–183.
    [6]
    SEYMOUR M S and CUMMING I G. InSAR terrain height estimation using low-quality sparse DEMs[C]. 3rd ERS Symposium, Florence, Italy, 1997: 421–426.
    [7]
    LIAO Mingsheng, WANG Teng, LU Lijun, et al. Reconstruction of DEMs from ERS-1/2 Tandem data in mountainous area facilitated by SRTM data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2325–2335. doi: 10.1109/TGRS.2007.896546
    [8]
    刘辉, 靳国旺, 张红敏, 等. DEM辅助的山区InSAR相位解缠[J]. 测绘科学技术学报, 2017, 34(2): 215–220. doi: 10.3969/j.issn.1673-6338.2017.02.019

    LIU Hui, JIN Guowang, ZHANG Hongmin, et al. Phase unwrapping assisted by DEM of InSAR for mountainous terrain[J]. Journal of Geomatics Science and Technology, 2017, 34(2): 215–220. doi: 10.3969/j.issn.1673-6338.2017.02.019
    [9]
    FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. doi: 10.1029/2005RG000183
    [10]
    FUJISADA H, BAILEY G B, KELLY G G, et al. ASTER DEM performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2707–2714. doi: 10.1109/TGRS.2005.847924
    [11]
    CRIPPEN R, BUCKLEY S, AGRAM P, et al. NASADEM global elevation model: Methods and progress[C]. XXIII ISPRS Congress, Prague, Czech Republic, 2016: 125–128. doi: 10.5194/isprsarchives-XLI-B4-125-2016.
    [12]
    LIN Jianhe, LÜ Xiaolei, and LI Rui. Automatic registered back-projection approach based on object orientation for airborne repeat-track interferometric SAR[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1066–1076. doi: 10.1049/iet-rsn.2018.5053
    [13]
    DUERSCH M I. Backprojection for synthetic aperture radar[D]. [Ph. D. dissertation], Brigham Young University, 2013.
    [14]
    韦顺军, 师君, 张晓玲, 等. 基于曲面投影的毫米波InSAR数据成像方法[J]. 雷达学报, 2015, 4(1): 49–59. doi: 10.12000/JR14137

    WEI Shunjun, SHI Jun, ZHANG Xiaoling, et al. Millimeter-wave interferometric synthetic aperture radar data imaging based on terrain surface projection[J]. Journal of Radars, 2015, 4(1): 49–59. doi: 10.12000/JR14137
    [15]
    ZEBKER H. User-friendly InSAR products – do we need range-Doppler?[C]. 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–4.
    [16]
    师君, 马龙, 韦顺军, 等. 基于导航数据的Ka波段InSAR成像处理与分析[J]. 雷达学报, 2014, 3(1): 19–27. doi: 10.3724/SP.J.1300.2014.13142

    SHI Jun, MA Long, WEI Shunjun, et al. Ka-band InSAR imaging and analysis based on IMU data[J]. Journal of Radars, 2014, 3(1): 19–27. doi: 10.3724/SP.J.1300.2014.13142
    [17]
    潘舟浩, 李道京, 刘波, 等. 基于BP算法和时变基线的机载InSAR数据处理方法研究[J]. 电子与信息学报, 2014, 36(7): 1585–1591. doi: 10.3724/SP.J.1146.2013.00715

    PAN Zhouhao, LI Daojing, LIU Bo, et al. Processing of the airborne InSAR data based on the BP algorithm and the time-varying baseline[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1585–1591. doi: 10.3724/SP.J.1146.2013.00715
    [18]
    韦顺军, 张晓玲, 师君, 等. 同空间后向投影InSAR成像及干涉相位提取方法[J]. 宇航学报, 2015, 36(3): 336–343. doi: 10.3873/j.issn.1000-1328.2015.03.013

    WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. InSAR imaging and interferogram extraction-based the same space back-projection[J]. Journal of Astronautics, 2015, 36(3): 336–343. doi: 10.3873/j.issn.1000-1328.2015.03.013
    [19]
    SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: Wiley. 1999.
    [20]
    王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京: 科学出版社, 2002: 33–37.

    WANG Chao, ZHANG Hong, and LIU Zhi. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002: 33–37.
  • Relative Articles

    [1]LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001
    [2]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [3]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [4]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [5]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [6]GONG Zhihua, LI Kaiming, DUAN Pengwei, CHEN Chunjiang. Attitude and Orbital Coupled Modeling and Micro-Doppler Characteristics Analysis of the Projectile with Initial Disturbances[J]. Journal of Radars, 2023, 12(4): 793-803. doi: 10.12000/JR23026
    [7]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [8]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [9]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [10]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [11]CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068
    [12]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [13]CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041
    [14]DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006
    [15]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [16]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [17]Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [18]Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110
    [19]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [20]Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102
  • Cited by

    Periodical cited type(1)

    1. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 62.7 %META: 62.7 %PDF: 10.1 %PDF: 10.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.8 %其他: 16.8 %其他: 0.9 %其他: 0.9 %Absecon: 0.1 %Absecon: 0.1 %China: 0.5 %China: 0.5 %Germany: 0.0 %Germany: 0.0 %India: 0.1 %India: 0.1 %Japan: 0.2 %Japan: 0.2 %Malvern: 0.2 %Malvern: 0.2 %Netherlands: 0.1 %Netherlands: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.4 %[]: 0.4 %上海: 0.9 %上海: 0.9 %上海市: 0.0 %上海市: 0.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %云浮: 0.0 %云浮: 0.0 %佛山: 0.1 %佛山: 0.1 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %加州: 0.1 %加州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 12.3 %北京: 12.3 %南京: 0.6 %南京: 0.6 %南宁: 0.0 %南宁: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %坦佩: 0.1 %坦佩: 0.1 %大田广域: 0.1 %大田广域: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %宜春: 0.0 %宜春: 0.0 %常州: 0.0 %常州: 0.0 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %广州市: 0.0 %广州市: 0.0 %开封: 0.1 %开封: 0.1 %弗雷瑞斯: 0.3 %弗雷瑞斯: 0.3 %张家口: 0.3 %张家口: 0.3 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德宏: 0.1 %德宏: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.2 %扬州: 0.2 %斯德哥尔摩: 0.0 %斯德哥尔摩: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 0.9 %深圳: 0.9 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.4 %漯河: 0.4 %焦作: 0.0 %焦作: 0.0 %珠海: 0.0 %珠海: 0.0 %瑟普赖斯: 0.1 %瑟普赖斯: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %西宁: 34.8 %西宁: 34.8 %西安: 1.4 %西安: 1.4 %贵阳: 0.0 %贵阳: 0.0 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %运城: 0.1 %运城: 0.1 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.0 %重庆: 0.0 %长沙: 0.7 %长沙: 0.7 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %青岛: 0.2 %青岛: 0.2 %首尔: 0.1 %首尔: 0.1 %首尔特别: 0.3 %首尔特别: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他AbseconChinaGermanyIndiaJapanMalvernNetherlandsUnited States[]上海上海市东莞中卫临汾云浮佛山兰辛加利福尼亚州加州包头北京南京南宁台北台州合肥吉林呼和浩特嘉兴坦佩大田广域大连天津宁波宜春常州平顶山广州广州市开封弗雷瑞斯张家口张家口市张家界徐州德宏惠州成都扬州斯德哥尔摩新乡无锡昆明杭州枣庄格兰特县武汉沈阳洛杉矶洛阳济南深圳渭南湖州湘潭漯河焦作珠海瑟普赖斯盐城石家庄石家庄市纽约绍兴绵阳罗马美国伊利诺斯芝加哥芒廷维尤芝加哥苏州西宁西安贵阳赫尔辛基运城连云港邯郸郑州重庆长沙阿姆斯特丹青岛首尔首尔特别鹰潭齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2484) PDF downloads(198) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint