Citation: | WAN Xianrong, LYU Min, XIE Deqiang, et al. Jamming method of passive radar systems based on characteristics of signal structure[J]. Journal of Radars, 2020, 9(6): 987–997. doi: 10.12000/JR20124 |
[1] |
王沙飞, 鲍雁飞, 李岩. 认知电子战体系结构与技术[J]. 中国科学: 信息科学, 2018, 48(12): 1603–1613. doi: 10.1360/N112018-00153
WANG Shafei, BAO Yanfei, and LI Yan. The architecture and technology of cognitive electronic warfare[J]. Scientia Sinica Informationis, 2018, 48(12): 1603–1613. doi: 10.1360/N112018-00153
|
[2] |
何孟良, 李雯, 刘畅. 无线电电子对抗系统的发展前景及趋势[J]. 电子信息对抗技术, 2019, 34(6): 48–51, 84. doi: 10.3969/j.issn.1674-2230.2019.06.011
HE Mengliang, LI Wen, and LIU Chang. The development prospect and trend of radio electronic counteraction[J]. Electronic Information Warfare Technology, 2019, 34(6): 48–51, 84. doi: 10.3969/j.issn.1674-2230.2019.06.011
|
[3] |
陈文奎, 陶建义. 新体制雷达及其对抗技术综述[J]. 舰船电子对抗, 2010, 33(4): 9–14. doi: 10.16426/j.cnki.jcdzdk.2010.04.011
CHEN Wenkui and TAO Jianyi. Summary of new system radar and their countermeasure techniques[J]. Shipboard Electronic Countermeasure, 2010, 33(4): 9–14. doi: 10.16426/j.cnki.jcdzdk.2010.04.011
|
[4] |
万显荣, 易建新, 程丰, 等. 单频网分布式外辐射源雷达技术[J]. 雷达学报, 2014, 3(6): 623–631. doi: 10.12000/JR14156
WAN Xianrong, YI Jianxin, CHENG Feng, et al. Single frequency network based distributed passive radar technology[J]. Journal of Radars, 2014, 3(6): 623–631. doi: 10.12000/JR14156
|
[5] |
万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027
WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027
|
[6] |
GRIFFITHS H D and BAKER C J. An Introduction to Passive Radar[M]. Boston, US: Artech House, 2017.
|
[7] |
O’HAGAN D W, PAINE S, and SCHÜPBACH C. Overview of electronic attacks against passive radar[C]. 2019 International Applied Computational Electromagnetics Society Symposium, Miami, USA, 2019: 1–2.
|
[8] |
SCHUPBACH C, O’HAGAN D W, and PAINE S. Electronic attacks on DVB-T-based passive radar systems[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1–6. doi: 10.1109/RADAR.2018.8378595.
|
[9] |
PAINE S, O’HAGAN D W, INGGS M, et al. Evaluating the performance of FM-based PCL radar in the presence of jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 631–643. doi: 10.1109/TAES.2018.2858158
|
[10] |
SCHÜPBACH C and BÖNIGER U. Jamming of DAB-based passive radar systems[C]. 2016 European Radar Conference, London, UK, 2016: 1–4.
|
[11] |
BAI Bowen, LIU Yanming, SONG Lihao, et al. Passive radar jamming: A novel method using time-varying plasma[J]. IEEE Access, 2019, 7: 120082–120088. doi: 10.1109/ACCESS.2019.2935514
|
[12] |
BAROTT W C and HIMED B. Cochannel interference in ATSC passive radar[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1–6. doi: 10.1109/RADAR.2015.7131190.
|
[13] |
LYU Min, YI Jianxin, WAN Xianrong, et al. Cochannel interference in DTMB-based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2138–2149. doi: 10.1109/TAES.2018.2882959
|
[14] |
WOJACZEK P, SUMMERS A, CRISTALLINI D, et al. Results of airborne PCL under CCI conditions using DVB-T illuminators of opportunity[C]. 2018 International Conference on Radar, Brisbane, Australia, 2018: 1–6. doi: 10.1109/RADAR.2018.8557280.
|
[15] |
吕晓德, 张汉良, 刘忠胜, 等. 基于LTE信号的外辐射源雷达同频基站干扰抑制方法研究[J]. 电子与信息学报, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904
LYU Xiaode, ZHANG Hanliang, LIU Zhongsheng, et al. Research on co-channel base station interference suppression method of passive radar based on LTE signal[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904
|
[16] |
吕晓德, 孙正豪, 刘忠胜, 等. 基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究[J]. 电子与信息学报, 2020, 42(5): 1288–1296. doi: 10.11999/JEIT190178
LYU Xiaode, SUN Zhenghao, LIU Zhongsheng, et al. Research on suppressing co-channel interference of passive radar based on blind source separation using second order statistics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1288–1296. doi: 10.11999/JEIT190178
|
[17] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 20600-2006 数字电视地面广播传输系统帧结构、信道编码和调制[S]. 北京: 中国标准出版社, 2007.
AQSIQ, Standardization Administration of China. GB 20600-2006 Framing structure, channel coding and modulation for digital television terrestrial broadcasting system[S]. Beijing: Standards Press of China, 2007.
|
[18] |
ETSI E N. Digital video broadcasting (DVB): Frameing structure, channel coding and modulation for digital terrestrial television[J]. ETSI EN, 2004, 300(744): V1.
|
[19] |
国家广播电影电视总局. GY/T 220.1-2006 移动多媒体广播 第1部分: 广播信道帧结构、信道编码和调制[S]. 2006.
SARFT. GY/T 220.1-2006 Mobile multimedia broadcasting Part 1: Framing structure channel coding and modulation for broadcasting channel[S]. 2006.
|
[20] |
国家广播电影电视总局. GY/T 220.2-2006 移动多媒体广播 第2部分: 复用[S]. 2006.
SARFT. GY/T 220.2-2006 Mobile multimedia broadcasting Part 2: Multiplexing[S]. 2006.
|
[1] | CHAI Jiahui, LI Minglei, LI Min, WEI Dazhou, CHEN Guangyong. ResCalib: Joint LiDAR and Camera Calibration Based on Geometrically Supervised Deep Neural Networks[J]. Journal of Radars. doi: 10.12000/JR24233 |
[2] | WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105 |
[3] | HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168 |
[4] | WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101 |
[5] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[6] | DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002 |
[7] | CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140 |
[8] | HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169 |
[9] | TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033 |
[10] | CHEN Siwei, CUI Xingchao, LI Mingdian, TAO Chensong, LI Haoliang. SAR Image Active Jamming Type Recognition Based on Deep CNN Model[J]. Journal of Radars, 2022, 11(5): 897-908. doi: 10.12000/JR22143 |
[11] | ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051 |
[12] | JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167 |
[13] | HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165 |
[14] | MA Lin, PAN Zongxu, HUANG Zhongling, HAN Bing, HU Yuxin, ZHOU Xiao, LEI Bin. Multichannel False-target Discrimination in SAR Images Based on Sub-aperture and Full-aperture Feature Learning[J]. Journal of Radars, 2021, 10(1): 159-172. doi: 10.12000/JR20106 |
[15] | SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012 |
[16] | LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103 |
[17] | ZHANG Jinsong, XING Mengdao, SUN Guangcai. A Water Segmentation Algorithm for SAR Image Based on Dense Depthwise Separable Convolution[J]. Journal of Radars, 2019, 8(3): 400-412. doi: 10.12000/JR19008 |
[18] | Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048 |
[19] | Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040 |
[20] | Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130 |