WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080
Citation: LI Meng and LIU Chang. Super-resolution reconstruction of SAR images based on feature reuse dilated-residual convolutional neural networks [J]. Journal of Radars, 2020, 9(2): 363–372. doi: 10.12000/JR19110

Super-resolution Reconstruction of SAR Images Based on Feature Reuse Dilated-Residual Convolutional Neural Networks

DOI: 10.12000/JR19110 CSTR: 32380.14.JR19110
Funds:  The State Key Research Development Program of China (2017YFB0503001)
More Information
  • Corresponding author: LIU Chang, cliu@mail.ie.ac.cn
  • Received Date: 2019-12-06
  • Rev Recd Date: 2020-03-05
  • Available Online: 2020-03-29
  • Publish Date: 2020-04-01
  • For Synthetic Aperture Radar (SAR) images, traditional super-resolution methods heavily rely on the artificial design of visual features, and super-reconstruction algorithms based on general Convolutional Neural Network (CNN) have poor fidelity to the target edge contour and weak reconstruction ability to small targets. Aiming at the above problems, in this paper, a Dilated-Resnet CNN (DR-CNN) super-resolution model based on feature reuse, i.e., Feature Reuse Dilated-Resnet CNN (FRDR-CNN), is proposed and perceptual loss is introduced, which accurately realizes four times the semantic super-resolution of SAR images. To increase the receptive field, a DR-CNN structure is used to limit the serious loss of the feature map’s resolution in the model, improving the sensitivity to tiny details. To maximize the utilization of features at different levels, the FRDR-CNN cascades the feature maps of different levels, which greatly improves the efficiency of the feature extraction module and further improves the super-resolution accuracy. With the introduction of the perceptual loss, this method has a superior performance in recovering image texture and edge information. Experimental results of the study show that the FRDR-CNN algorithm is more capable of providing small objects’ super-resolution and more accurate in the visual reconstruction of contour details, compared with traditional algorithms and several popular CNN super-resolution algorithms. Objectively, the Peak Signal to Noise Ratio (PSNR) is 33.5023 dB and Structural Similarity Index (SSIM) is 0.5127, and the Edge Preservation Degreebased on the Ratio Of Average (EPD-ROA) is 0.4243 and 0.4373 in the horizontal and vertical directions, respectively.

     

  • [1]
    BI Zhaoqiang, LI Jian, and LIU Zhengshe. Super resolution SAR imaging via parametric spectral estimation methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 267–281. doi: 10.1109/7.745697
    [2]
    GUPTA I J, BEALS M J, and MOGHADDAR A. Data extrapolation for high resolution radar imaging[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(11): 1540–1545. doi: 10.1109/8.362783
    [3]
    BROWN L G. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325–376. doi: 10.1145/146370.146374
    [4]
    YANG Siyoung, KIM Y, and JEONG J. Fine edge-preserving technique for display devices[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1761–1769. doi: 10.1109/TCE.2008.4711232
    [5]
    DUCHON C E. Lanczos filtering in one and two dimensions[J]. Journal of Applied Meteorology, 1979, 18(8): 1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [6]
    YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. doi: 10.1109/TIP.2010.2050625
    [7]
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    [8]
    KIM J, KWON LEE J, and MU LEE K. Accurate image super-resolution using very deep convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    [9]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645. doi: 10.1007/978-3-319-46493-0_38.
    [10]
    WANG Longgang, ZHENG Mana, DU Wenbo, et al. Super-resolution SAR image reconstruction via generative adversarial network[C]. 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4.
    [11]
    LI Zhen, YANG Jinglei, LIU Zheng, et al. Feedback network for image super-resolution[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3862–3871. doi: 10.1109/CVPR.2019.00399.
    [12]
    KIM J, KWON LEE J, and MU LEE K. Deeply-recursive convolutional network for image super-resolution[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1637–1645. doi: 10.1109/CVPR.2016.181.
    [13]
    TAI Ying, YANG Jian, and LIU Xiaoming. Image super-resolution via deep recursive residual network[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2790–2798. doi: 10.1109/CVPR.2017.298.
    [14]
    LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. doi: 10.1109/CVPR.2017.19.
    [15]
    YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.
    [16]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708. doi: 10.1109/CVPR.2017.243.
    [17]
    BENGIO Y, LECUN Y, NOHL C, et al. LeRec: A NN/HMM hybrid for on-line handwriting recognition[J]. Neural Computation, 1995, 7(6): 1289–1303. doi: 10.1162/neco.1995.7.6.1289
    [18]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
    [19]
    JOHNSON J, ALAHI A, and LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 694–711. doi: 10.1007/978-3-319-46475-6_43.
    [20]
    ZHANG Qiang, YUAN Qiangqiang, LI Jie, et al. Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10(2): 196. doi: 10.3390/rs10020196
    [21]
    WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]. 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, 2018: 1451–1460. doi: 10.1109/WACV.2018.00163.
    [22]
    SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Lake Tahoe, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    [23]
    ZEILER M D, TAYLOR G W, and FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2018–2025. doi: 10.1109/ICCV.2011.6126474.
    [24]
    NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. The 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807–814.
    [25]
    王振. 基于学习策略的SAR图像超分辨[D]. [硕士论文], 西安电子科技大学, 2018.

    WANG Zhen. SAR image super resolution based on learning strategy[D]. [Master dissertation], Xidian University, 2018.
    [26]
    WANG Qiang and BI Sheng. Prediction of the PSNR quality of decoded images in fractal image coding[J]. Mathematical Problems in Engineering, 2016, 2016: 2159703.
    [27]
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    [28]
    唐伶俐, 江平, 戴昌达, 等. 星载SAR图象斑点噪声消除方法效果的比较研究[J]. 环境遥感, 1996, 11(3): 206–211.

    TANG Lingli, JIANG Ping, DAI Changda, et al. Evaluation of smoothing filters suppressing speckle noise on SAR images[J]. Remote Sensing of Environment China, 1996, 11(3): 206–211.
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [3]LIU Ningbo, DING Hao, HUANG Yong, DONG Yunlong, WANG Guoqing, DONG Kai. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program[J]. Journal of Radars, 2021, 10(1): 173-182. doi: 10.12000/JR21011
    [4]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [5]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [6]GUAN Jian. Summary of Marine Radar Target Characteristics[J]. Journal of Radars, 2020, 9(4): 674-683. doi: 10.12000/JR20114
    [7]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [8]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [9]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [10]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [11]DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006
    [12]LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [13]LI Shangyuan, XIAO Xuedi, ZHENG Xiaoping. Distributed Coherent Aperture Radar Enabled by Microwave Photonics[J]. Journal of Radars, 2019, 8(2): 178-188. doi: 10.12000/JR19024
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [16]Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
    [17]Wang Fulai, Pang Chen, Li Yongzhen, Wang Xuesong. Orthogonal Polyphase Coded Waveform Design Method for Simultaneous Fully Polarimetric Radar[J]. Journal of Radars, 2017, 6(4): 340-348. doi: 10.12000/JR16150
    [18]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [19]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(6)

    1. Liting Zhang,Hao Huan,Ran Tao,Xiaogang Tang. A Residual Frequency Offset Estimation Method Based on Range Migration Fitting. Journal of Beijing Institute of Technology. 2024(02): 103-110 .
    2. Guangcai Sun,Wenlong Dong,Yuqi Wang,Mengdao Xing. Synthetic Aperture Positioning: A Review. Journal of Beijing Institute of Technology. 2024(02): 89-102 .
    3. 马超,王建明,高华,刘嘉铭. 一种深度神经网络SAR图像目标识别可视化方法. 空天预警研究学报. 2023(04): 295-300 .
    4. 何峰,许华健,李娟慧,王克让,张少华. 基于合成孔径的单站无源定位性能影响因素分析. 航天电子对抗. 2023(06): 25-29+34 .
    5. 王裕旗,孙光才,邢孟道,张子敬. 合成孔径无源定位性能分析与参数设计. 电子与信息学报. 2022(09): 3155-3162 .
    6. 吴癸周,郭福成,张敏. 信号直接定位技术综述. 雷达学报. 2020(06): 998-1013 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 59.6 %META: 59.6 %PDF: 8.2 %PDF: 8.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.1 %其他: 22.1 %其他: 0.5 %其他: 0.5 %China: 0.5 %China: 0.5 %India: 0.1 %India: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.7 %上海: 0.7 %中卫: 0.1 %中卫: 0.1 %丽水: 0.1 %丽水: 0.1 %乐山: 0.2 %乐山: 0.2 %九江: 0.2 %九江: 0.2 %亳州: 0.1 %亳州: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %儋州: 0.1 %儋州: 0.1 %兰州: 0.2 %兰州: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.1 %包头: 0.1 %北京: 10.3 %北京: 10.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 1.0 %南京: 1.0 %南昌: 0.1 %南昌: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %安康: 0.4 %安康: 0.4 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.2 %宿迁: 0.2 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.2 %开封: 0.2 %张家口: 1.2 %张家口: 1.2 %张家口市: 0.1 %张家口市: 0.1 %张家界: 0.1 %张家界: 0.1 %德阳: 0.1 %德阳: 0.1 %成都: 0.5 %成都: 0.5 %扬州: 0.2 %扬州: 0.2 %新乡: 0.1 %新乡: 0.1 %无锡: 0.4 %无锡: 0.4 %日照: 0.1 %日照: 0.1 %昆明: 0.1 %昆明: 0.1 %昌吉: 0.1 %昌吉: 0.1 %杭州: 2.3 %杭州: 2.3 %枣庄: 0.1 %枣庄: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.1 %漯河: 0.1 %焦作: 0.1 %焦作: 0.1 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.3 %苏州: 0.3 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 33.7 %西宁: 33.7 %西安: 0.7 %西安: 0.7 %西雅图: 0.2 %西雅图: 0.2 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黔东南: 0.1 %黔东南: 0.1 %其他其他ChinaIndia[]上海中卫丽水乐山九江亳州佛山保定儋州兰州加利福尼亚州包头北京北海十堰南京南昌台北台州呼和浩特哈尔滨哥伦布商丘嘉兴大连天津太原威海安康宣城宿迁崇左巴中常州广州库比蒂诺廊坊延安开封张家口张家口市张家界德阳成都扬州新乡无锡日照昆明昌吉杭州枣庄武汉沈阳泰安济南海口淮安深圳温州湖州湘潭漯河焦作玉林珠海盐城石家庄石家庄市秦皇岛纽约绍兴舟山芒廷维尤芝加哥苏州衡水衢州西宁西安西雅图贵港贵阳赤峰运城邯郸郑州重庆长沙阳泉青岛香港特别行政区黄冈黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3936) PDF downloads(583) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint