WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: HUANG Yinli, SUN Lu, GUO Liang, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate[J]. Journal of Radars, 2020, 9(2): 335–342. doi: 10.12000/JR19082

Ship Detection Algorithm Based on Spatially Variant Apodization Sidelobe Suppression and Order Statistic-Constant False Alarm Rate

DOI: 10.12000/JR19082
Funds:  The National Natural Science Foundation of China (61001210), The National Key R&D Program of China (2017YFC1405600), The Natural Science Fundamental of Shaanxi Province (2017JQ6021), The Fundamental Research Funds for the Central Universities (JB180213), Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (SKL2018KF06), The Research Plan Project of National University of Defense Technology (ZK180102)
More Information
  • Corresponding author: GUO Liang, lguo@mail.xidian.edu.cn
  • Received Date: 2019-09-10
  • Rev Recd Date: 2019-12-09
  • Available Online: 2019-12-30
  • Publish Date: 2020-04-01
  • The special imaging mechanism of the Synthetic Aperture Radar (SAR) causes the sidelobe effect on SAR images. In target detection, the sidelobe effect changes the shapes of strong reflective targets, which results in the problems of localization difficulty and localization error. To solve this problem, this paper proposes a ship detection algorithm based on Spatially Variant Apodization (SVA) and Order Statistic-Constant False Alarm Rate (OS-CFAR). First, the global-CFAR algorithm is used to prescreen the potential target points, which reduces the computational burden of the following steps. Second, the SVA algorithm is modified to improve the speed of sidelobe suppression and applied to the raw complex image data. Then, the nonlinear method OS-CFAR is used to detect the targets on the processed image, and the morphological dilation processing is used to make up for the wrong suppressed points caused by the SVA algorithm. Finally, the GF-3 SAR images are used to test the algorithm and the comparison of the image contrast and detected numbers in the results with SVA and without SVA verifies the effectiveness of the proposed algorithm.

     

  • [1]
    FAWZY Z M, EL-SAMIE F E A, and FOUAD M. Processing of synthetic aperture radar data using frequency modulated signals[J]. Wireless Personal Communications, 2019, 107(2): 1061–1076. doi: 10.1007/s11277-019-06317-x
    [2]
    KERR D E. Propagation of Short Radio Waves[M]. New York: McGraw-Hill, 1951.
    [3]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [4]
    HARRIS F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51–83. doi: 10.1109/PROC.1978.10837
    [5]
    STANKWITZ H C, DALLAIRE R J, and FIENUP J R. Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267–279. doi: 10.1109/7.366309
    [6]
    王一丁, 纪慧波, 洪峻. 变量切趾技术在SAR/ISAR图像处理中的应用[J]. 电子与信息学报, 2003, 25(12): 1622–1627.

    WANG Yiding, JI Huibo, and HONG Jun. Application of apodization method in SAR/ISAR processing[J]. Journal of Electronics &Information Technology, 2003, 25(12): 1622–1627.
    [7]
    SMITH B H. Generalization of spatially variant apodization to noninteger nyquist sampling rates[J]. IEEE Transactions on Image Processing, 2000, 9(6): 1088–1093. doi: 10.1109/83.846250
    [8]
    CASTILLO-RUBIO C, LLORENTE-ROMANO S, and BURGOS-GARCIA M. Robust SVA method for every sampling rate condition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 571–580. doi: 10.1109/TAES.2007.4285354
    [9]
    NI Chong, WANG Yanfei, XU Xianghui, et al. A SAR sidelobe suppression algorithm based on modified spatially variant apodization[J]. Science China Technological Sciences, 2010, 53(9): 2542–2551. doi: 10.1007/s11431-010-4035-z
    [10]
    LIU Min, LI Zhou, and LIU Lu. A novel sidelobe reduction algorithm based on two-dimensional sidelobe correction using D-SVA for squint SAR images[J]. Sensors, 2018, 18(3): 783. doi: 10.3390/s18030783
    [11]
    El-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(7): 071598.
    [12]
    ZHAO Bo, CHEN Li, ZHOU Xiaoyang, et al. Target detection from SAR images based on wavelet transform de-noise and improved CFAR[C]. Proceedings of SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, Yichang, China, 2009: 749539.
    [13]
    KAPLAN L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 436–451. doi: 10.1109/7.937460
    [14]
    XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images[C]. The 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Shanxi, China, 2010.
    [15]
    SMITH M E and VARSHNEY P K. VI-CFAR: A novel CFAR algorithm based on data variability[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997.
    [16]
    GANDHI P P and KASSAM S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427–445. doi: 10.1109/7.7185
  • Relative Articles

    [1]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [2]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [3]QUAN Yinghui, WU Yaojun, DUAN Lining, XU Gang, XUE Min, LIU Zhixing, XING Mengdao. A Review of Radar Signal Processing Based on Sparse Recovery[J]. Journal of Radars, 2024, 13(1): 46-67. doi: 10.12000/JR23211
    [4]HU Xueyao, LIANG Can, LU Shanshan, WANG Zaiyang, ZHENG Le, LI Yang. Matrix Completion-based Range-Doppler Spectrum Estimation for Random Stepped-frequency Radars[J]. Journal of Radars, 2024, 13(1): 200-214. doi: 10.12000/JR23176
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [7]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [8]CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189
    [9]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [10]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [11]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [12]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [13]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [14]Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [15]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [16]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [17]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [18]Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075
    [19]Duan Ke-qing, Wang Ze-tao, Xie Wen-chong, Gao Fei, Wang Yong-liang. A Space-time Adaptive Processing Algorithm Based on Joint Sparse Recovery[J]. Journal of Radars, 2014, 3(2): 229-234. doi: 10.3724/SP.J.1300.2014.13149
    [20]Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 58.2 %META: 58.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 1.0 %其他: 1.0 %Algeria: 0.1 %Algeria: 0.1 %Australia: 0.0 %Australia: 0.0 %Canton: 0.0 %Canton: 0.0 %China: 1.8 %China: 1.8 %Germany: 0.0 %Germany: 0.0 %India: 0.0 %India: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Malvern: 0.1 %Malvern: 0.1 %Nahant: 0.1 %Nahant: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Turkey: 0.1 %Turkey: 0.1 %United Kingdom: 0.4 %United Kingdom: 0.4 %United States: 0.3 %United States: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 1.1 %[]: 1.1 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %上饶: 0.0 %上饶: 0.0 %东京都: 0.2 %东京都: 0.2 %东莞: 0.3 %东莞: 0.3 %中卫: 0.2 %中卫: 0.2 %临汾: 0.0 %临汾: 0.0 %丹东: 0.1 %丹东: 0.1 %乌海: 0.0 %乌海: 0.0 %乐山: 0.1 %乐山: 0.1 %伊春: 0.0 %伊春: 0.0 %伊犁: 0.0 %伊犁: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 6.3 %北京: 6.3 %南京: 2.2 %南京: 2.2 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.0 %安顺: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.2 %巴中: 0.2 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 2.8 %张家口: 2.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %怀化: 0.1 %怀化: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 3.5 %成都: 3.5 %扬州: 0.3 %扬州: 0.3 %新加坡: 0.3 %新加坡: 0.3 %新泽西: 0.0 %新泽西: 0.0 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朔州: 0.0 %朔州: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.6 %杭州: 0.6 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河源: 0.0 %河源: 0.0 %泉州: 0.1 %泉州: 0.1 %泰安: 0.0 %泰安: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.8 %深圳: 0.8 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滁州: 0.1 %滁州: 0.1 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 33.8 %西宁: 33.8 %西安: 1.5 %西安: 1.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.1 %酒泉: 0.1 %里奇兰: 0.1 %里奇兰: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %隆德: 0.0 %隆德: 0.0 %隆格伊: 0.1 %隆格伊: 0.1 %青岛: 0.4 %青岛: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AlgeriaAustraliaCantonChinaGermanyIndiaKennedy TownMalvernNahantRochesterSeattleSingaporeTaichungTurkeyUnited KingdomUnited StatesViet Nam[]三明上海上饶东京都东莞中卫临汾丹东乌海乐山伊春伊犁伦敦佛山信阳六安兰州兰辛内江凉山加利福尼亚州北京南京南宁南平南昌南通卡拉奇厦门台北台州台湾省合肥呼和浩特咸阳哈尔滨商丘嘉兴大同大庆大连天津太原威海娄底宁波安卡拉安康安顺宜春宝鸡宣城巴中巴音郭楞蒙古自治州巴黎常州常德广州库比蒂诺廊坊开封张家口张家界徐州德里德黑兰怀化惠州成都扬州新加坡新泽西无锡日喀则日照昆明晋中晋城朔州朝阳杭州桂林榆林武汉汉中汕头沈阳河源泉州泰安泰米尔纳德洛杉矶洛阳济南海口海得拉巴淄博淮北淮南深圳清远温州渭南湖州湘潭滁州漯河濮阳烟台玉林石家庄福州秦皇岛纽约绍兴绵阳罗奥尔凯埃罗马芒廷维尤芝加哥苏州莆田莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城邢台邯郸郑州酒泉里奇兰重庆金华镇江长春长沙长治阳泉阿姆斯特丹隆德隆格伊青岛香港特别行政区马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5279) PDF downloads(661) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint