Citation: | LU Jiaguo, TAO Li, ZHONG Xuelian, et al. The L-band airborne repeat-pass interferometric SAR system and its experimental study[J]. Journal of Radars, 2019, 8(6): 804–819. doi: 10.12000/JR19078 |
[1] |
REIGBER A, MERCER B, PRATS P, et al. Spectral diversity methods applied to DEM generation from repeat-pass P-band InSAR[C]. 2006 European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
|
[2] |
PINHEIRO M, REIGBER A, SCHEIBER R, et al. Generation of highly accurate DEMs over flat areas by means of dual-frequency and dual-baseline airborne SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4361–4390. doi: 10.1109/TGRS.2018.2817122
|
[3] |
PRATS P, SCHEIBER R, REIGBER A, et al. Estimation of the surface velocity field of the Aletsch glacier using multibaseline airborne SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 419–430. doi: 10.1109/tgrs.2008.2004277
|
[4] |
REIGBER A, SCHEIBER R, JÄGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
|
[5] |
DE MACEDO K A C, SCHEIBER R, and MOREIRA A. First evaluations of airborne InSAR time-series[C]. 2006 European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
|
[6] |
PRATS P, SCHEIBER R, MOREIRA A, et al. Advanced D-InSAR techniques applied to a time series of airborne SAR data[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 4874–4877. doi: 10.1109/IGARSS.2007.4423953.
|
[7] |
PRATS P, REIGBER A, MALLORQUI J J, et al. Estimation of the temporal evolution of the deformation using airborne differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1065–1078. doi: 10.1109/TGRS.2008.915758
|
[8] |
BRANCATO V, JÄGER M, SCHEIBER R, et al. A motion compensation strategy for airborne repeat-pass SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1580–1584. doi: 10.1109/LGRS.2018.2848596
|
[9] |
ROSEN P A, HENSLEY S, WHEELER K, et al. UAVSAR: A new NASA airborne SAR system for science and technology research[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 22–29. doi: 10.1109/RADAR.2006.1631770.
|
[10] |
MADSEN S N, HENSLEY S, WHEELER K, et al. UAV-based L-band SAR with precision flight path control[C]. SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, Honolulu, USA, 2005: 51–60. doi: 10.1117/12.578373.
|
[11] |
HENSLEY S, ZEBKER H, JONES C, et al. First deformation results using the NASA/JPL UAVSAR instrument[C]. The 2nd Annual-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009: 1051–1055. doi: 10.1109/APSAR.2009.5374246.
|
[12] |
HENSLEY S, ZEBKER H, JONES C, et al. Use of airborne SAR interferometry for monitoring deformation of large-scale man-made features[C]. International Workshop Spatial Information Technologies, Hong Kong, China, 2010.
|
[13] |
HENSLEY S, JONES C, MOLLER D, et al. Ice studies using UAVSAR L-band and Ka-band data[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
|
[14] |
FORNARO G, LANARI R, SANSOSTI E, et al. Airborne differential interferometry: X-band experiments[C]. 2004 International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 3329–3332. doi: 10.1109/IGARSS.2004.1370416.
|
[15] |
Perna S, Wimmer C, Moreira J, et al. X-band airborne differential interferometry: Results of the OrbiSAR campaign over the Perugia area[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 489–503. doi: 10.1109/TGRS.2007.908871
|
[16] |
DE MACEDO K A C, WIMMER C, BARRETO T L M, et al. Long-term airborne DInSAR measurements at X- and P-bands: A case study on the application of surveying geohazard threats to pipelines[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 990–1005. doi: 10.1109/jstars.2012.2187275
|
[17] |
钟雪莲, 向茂生, 郭华东, 等. 机载重轨干涉合成孔径雷达的发展[J]. 雷达学报, 2013, 2(3): 367–381. doi: 10.3724/SP.J.1300.2013.13005
ZHONG Xuelian, XIANG Maosheng, GUO Huadong, et al. Current development in airborne repeat-pass interferometric synthetic aperture radar[J]. Journal of Radars, 2013, 2(3): 367–381. doi: 10.3724/SP.J.1300.2013.13005
|
[18] |
LIN Jianhe, LV Xiaolei, and LI Rui. Automatic registered back-projection approach based on object orientation for airborne repeat-track interferometric SAR[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1066–1076. doi: 10.1049/iet-rsn.2018.5053
|
[19] |
CAO Ning, LEE H, ZAUGG E, et al. Estimation of residual motion errors in airborne SAR interferometry based on time-domain backprojection and multisquint techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2397–2407. doi: 10.1109/TGRS.2017.2779852
|
[20] |
钟雪莲. 机载重轨干涉SAR残余运动估计方法研究[D]. [博士论文], 中国科学院大学, 2011: 111–140.
ZHONG Xuelian. Residual motion estimation for airborne repeat-pass interferometric SAR[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2011: 111–140.
|
[21] |
MOREIRA A and HUANG Y H. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029–1040. doi: 10.1109/36.312891
|
[22] |
MOREIRA A, MITTERMAYER J, and SCHEIBER R. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and ScanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1123–1136. doi: 10.1109/36.536528
|
[23] |
REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings- Radar, Sonar and Navigation, 2006, 153(3): 301–310. doi: 10.1049/ip-rsn:20045087
|
[24] |
CANTALLOUBE H and DUBOIS-FERNANDEZ P. Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results[J]. IEE Proceedings- Radar, Sonar and Navigation, 2006, 153(2): 163–176. doi: 10.1049/ip-rsn:20045097
|
[25] |
DE MACEDO K A C, SCHEIBER R, and MOREIRA A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151–3162. doi: 10.1109/tgrs.2008.924004
|
[26] |
ZHONG Xuelian, XIANG Maosheng, YUE Huanyin, et al. Algorithm on the estimation of residual motion errors in airborne SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1311–1323. doi: 10.1109/tgrs.2013.2249665
|
[27] |
ZHONG Xuelian, GUO Huadong, XIANG Maosheng, et al. Residual motion estimation with point targets and its application to airborne repeat-pass SAR interferometry[J]. International Journal of Remote Sensing, 2012, 33(3): 762–780. doi: 10.1080/01431161.2011.577838
|
[28] |
PRATS P, REIGBER A, and MALLORQUI J J. Interpolation-free coregistration and phase-correction of airborne SAR interferograms[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(3): 188–191. doi: 10.1109/lgrs.2004.828181
|
[29] |
REIGBER A, PRATS P, and MALLORQUI J J. Refined estimation of time-varying baseline errors in airborne SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 145–149. doi: 10.1109/lgrs.2005.860482
|
[30] |
FORNARO G, SANSOSTI E, LANARI R, et al. Role of processing geometry in SAR raw data focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 441–454. doi: 10.1109/TAES.2002.1008978
|
[31] |
KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Evaluation of digital elevation model generated by an airborne interferometric SAR (Pi-SAR2)[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 378–381. doi: 10.1109/IGARSS.2014.6946437.
|
[32] |
FANG Dongsheng, LV Xiaolei, YUN Ye, et al. An InSAR fine registration algorithm using uniform tie points based on Voronoi diagram[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1403–1407. doi: 10.1109/LGRS.2017.2715189
|