Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
Citation: JIANG Qian, WU Hao, and WANG Yanyu. Airborne multi-functional maritime surveillance radar system design and key techniques[J]. Journal of Radars, 2019, 8(3): 303–317. doi: 10.12000/JR19045

Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques

DOI: 10.12000/JR19045 CSTR: 32380.14.JR19045
More Information
  • Corresponding author: JIANG Qian, jiangqian0925@163.com
  • Received Date: 2019-03-19
  • Rev Recd Date: 2019-06-17
  • Available Online: 2019-06-24
  • Publish Date: 2019-06-01
  • As the main task load of the airborne platform for sea detection, the airborne multi-functional marine surveillance radar system has the following characteristics: the ability to operate in all weather conditions regularly, a wide detection range, and a complex and changeable working environment. Moreover, the system has a wide area coverage, great application prospects, and plays an important role in marine combat. According to the system characteristics and the advantages of the multi-functional marine surveillance radar, the selection of radar system, working parameters, and the working mode design of the system are discussed. The problems of slow target detection, ineffective tracking and target identification in strong sea clutter, which affects the key performance of the system, and technical ways to solve them are analyzed.

     

  • [1]
    陈锋. 国外机载海面监视雷达发展现状与趋势[J]. 直升机技术, 2011(1): 64–68. doi: 10.3969/j.issn.1673-1220.2011.01.013

    CHEN Feng. Development of the abroad airborne maritime surveillance radar[J]. Helicopter Technique, 2011(1): 64–68. doi: 10.3969/j.issn.1673-1220.2011.01.013
    [2]
    刘亮, 吉波. 无人机载雷达现状及发展趋势[J]. 现代导航, 2014(3): 227–231.

    LIU Liang and JI Bo. Status and development of radar on UAV[J]. Modern Navigation, 2014(3): 227–231.
    [3]
    Raytheon Company. SeaVue radar introduction datasheet[EB/OL]. www.raytheon.com.
    [4]
    Thales Company. Ocean master radar introduction datasheet[EB/OL]. www.thales.com.
    [5]
    IAI Elta System Company. EL/M-2022U radar introduction datasheet[EB/OL]. www.elta-ia.icom.
    [6]
    SELEX GALILEO Company. Seaspray radar introduction datasheet[EB/OL]. www.leonardocompany.com.
    [7]
    张翼麟. 美国MQ-4C无人机发展特点及趋势分析[J]. 飞航导弹, 2014(1): 45–48.

    ZHANG Yilin. Analysis of the development characteristics and trend of american MQ-4C UAV[J]. Aerodynamic Missile Journal, 2014(1): 45–48.
    [8]
    陈祖香. 美国MQ-4C无人机基本性能及作战应用[J]. 飞航导弹, 2016(12): 16–21.

    CHEN Zuxiang. Basic performance and operational application of american MQ-4C UAV[J]. Aerodynamic Missile Journal, 2016(12): 16–21.
    [9]
    IPPOLITO L J. Propagation Effects Handbook for Satellite Systems Design[M]. 4th ed. Baltimore: NASA Reference Publication, 1989.
    [10]
    徐艳国, 李宗武. 高分辨率雷达的海杂波特性研究[J]. 现代雷达, 2008, 30(5): 17–20. doi: 10.3969/j.issn.1004-7859.2008.05.005

    XU Yanguo and LI Zongwu. A study on sea clutter characteristics of high resolution radar[J]. Modern Radar, 2008, 30(5): 17–20. doi: 10.3969/j.issn.1004-7859.2008.05.005
    [11]
    何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [12]
    王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039
    [13]
    赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6): 620–638. doi: 10.12000/JR16092

    ZHAO Chunlei, WANG Yaliang, YANG Yunlong, et al. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620–638. doi: 10.12000/JR16092
    [14]
    王军东. 海杂波对机载雷达探测距离的影响[J]. 电子测量技术, 2018, 41(8): 21–24.

    WANG Jundong. Influence of sea clutter on airborne radar detection range[J]. Electronic Measurement Technology, 2018, 41(8): 21–24.
    [15]
    WARD K D, BAKER C J, and WATTS S. Maritime surveillance radar. I. Radar scattering from the ocean surface[J]. IEE Proceedings F - Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
    [16]
    RYAN J and JOHNSON M. Radar performance prediction for target detection at sea[C]. Proceedings of 1992 International Conference on Radar, Brighton, UK, 1992: 13–17.
    [17]
    CHAN H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings F- Radar and Signal Processing, 1990, 137(2): 102–112. doi: 10.1049/ip-f-2.1990.0015
    [18]
    丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [19]
    刘宁波, 关键, 黄勇, 等. 海杂波的分段分数布朗运动模型[J]. 物理学报, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503

    LIU Ningbo, GUAN Jian, HUANG Yong, et al. Piecewise fractional Brownian motion for modeling sea clutter[J]. Acta Physica Sinica, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [20]
    谢洪森, 邹鲲, 周鹏. 低掠射角海杂波的统计特性分析[J]. 雷达科学与技术, 2011, 9(2): 172–179. doi: 10.3969/j.issn.1672-2337.2011.02.015

    XIE Hongsen, ZOU Kun, and ZHOU Peng. Statistical analysis of sea clutter at low grazing angle[J]. Radar Science and Technology, 2011, 9(2): 172–179. doi: 10.3969/j.issn.1672-2337.2011.02.015
    [21]
    陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science &Technology Review, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002
    [22]
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    [23]
    舒占军. 基于高分辨距离像的雷达目标识别算法研究[D]. [硕士论文], 电子科技大学, 2016.

    SHU Zhanjun. Study on radar target recognttion using high resolution range profiles[D]. [Master dissertation], University of Electronic Science and Technology of China, 2016.
    [24]
    王燕宇, 党红杏, 张长耀. ISAR船只识别技术应用综述[C]. 第九届全国雷达学术年会论文集, 烟台, 2004: 640-643.

    WANG Yanyu, DANG Hongxing, and ZHANG Changyao. Overview of ISAR ship recognition technology application[C]. Proceedings of National Radar Academic Annual Conference, Yantai, China, 2004: 640–643.
    [25]
    陈文婷. SAR图像舰船目标特征提取与分类识别方法研究[D]. [硕士论文], 国防科学技术大学, 2012.

    CHEN Wenting. Study on the methods of feature extraction and recognition of ships in SAR imagery[D]. [Master dissertation], National University of Defense Technology, 2012.
    [26]
    邢相薇, 计科峰, 康利鸿, 等. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107–121. doi: 10.12000/JR14144

    XING Xiangwei, JI Kefeng, KANG Lihong, et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4(1): 107–121. doi: 10.12000/JR14144
    [27]
    陈文婷, 邢相薇, 计科峰. SAR图像舰船目标识别综述[J]. 现代雷达, 2012, 34(11): 53–58. doi: 10.3969/j.issn.1004-7859.2012.11.013

    CHEN Wenting, XING Xiangwei, and JI Kefeng. A survey of ship target recognition in SAR images[J]. Modern Radar, 2012, 34(11): 53–58. doi: 10.3969/j.issn.1004-7859.2012.11.013
    [28]
    王庆, 廖静娟, 田帮森. 基于特征值分解的全极化SAR遥感数据分类研究[J]. 遥感技术与应用, 2010, 25(1): 31–37. doi: 10.11873/j.issn.1004-0323.2010.1.31

    WANG Qing, LIAO Jingjuan, and TIAN Bangsen. Polarimetric SAR data classification with eigenvalue-based decompositions[J]. Remote Sensing Technology and Application, 2010, 25(1): 31–37. doi: 10.11873/j.issn.1004-0323.2010.1.31
    [29]
    刘眉洁, 戴永寿, 张杰, 等. 高分辨率全极化合成孔径雷达数据海冰二次分类方法研究[J]. 海洋学报, 2013, 35(4): 80–87. doi: 10.3969/j.issn.0253-4193.2013.04.010

    LIU Meijie, DAI Yongshou, ZHANG Jie, et al. The research on the object-based method of sea ice classification of high-resolution quad-polarization SAR data[J]. Acta Oceanologica Sinica, 2013, 35(4): 80–87. doi: 10.3969/j.issn.0253-4193.2013.04.010
    [30]
    安彧. 海战场舰船目标检测与识别研究[D]. [博士论文], 2015: 59–80.

    Anbiao. Research on ship target detection and recognition in sea battlefield [D]. [Ph.D. dissertation], Harbin Engineering University, 2015: 59–80.
    [31]
    承德保, 胡风明, 杨汝良. 利用改进分形特征对SAR图像目标检测方法的研究[J]. 电子与信息学报, 2009, 31(1): 164–168. doi: 10.3724/SP.J.1146.2008.00416

    CHENG Debao, HU Fengming, and YANG Ruliang. Study on target detection of SAR image using improved fractal feature[J]. Journal of Electronics &Information Technology, 2009, 31(1): 164–168. doi: 10.3724/SP.J.1146.2008.00416
    [32]
    吴义兵, 宋建社, 王瑞花. 基于分形维数的SAR图像纹理特征的提取[J]. 四川兵工学报, 2011, 32(7): 74–77, 84.

    WU Yibing, SONG Jianshe, and WANG Ruihua. Extraction of texture features of SAR images based on fractal dimension[J]. Journal of Sichuan Ordnance, 2011, 32(7): 74–77, 84.
    [33]
    LEE W L and HSIEH K S. A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images[J]. Signal Processing, 2010, 90(6): 1894–1904. doi: 10.1016/j.sigpro.2009.12.010
    [34]
    蒋少峰, 王超, 吴樊, 等. 基于结构特征分析的COSMO-SkyMed图像商用船舶分类算法[J]. 遥感技术与应用, 2014, 29(4): 607–615. doi: 10.11873/j.issn.1004-0323.2014.4.0607

    JIANG Shaofeng, WANG Chao, WU Fan, et al. Algorithm for merchant ship classification in COSMO-SkyMed images based on structural feature analysis[J]. Remote Sensing Technology and Application, 2014, 29(4): 607–615. doi: 10.11873/j.issn.1004-0323.2014.4.0607
    [35]
    张华俊. 基于图像特征匹配技术的数字图像相关法研究[D]. [硕士论文], 安徽大学, 2014.

    ZHANG Huajun. Research of digital image correlation method based on image feature matching technology[D]. [Master dissertation], Anhui University, 2014.
    [36]
    CHEN Wenting, JI Kefeng, XING Xiangwei, et al. Ship recognition in high resolution SAR imagery based on feature selection[C]. Proceedings of International Conference on Computer Vision in Remote Sensing, Xiamen, China, 2013.
    [37]
    蒋少峰. 高分辨率SAR图像船舶检测与分类方法研究[D]. [硕士论文], 中国科学院大学, 2013.

    JIANG Shaofeng. Study of ship detection and classification in high resolution SAR image[D]. [Master dissertation], University of Chinese Academy of Sciences, 2013.
    [38]
    孙勋, 黄平平, 涂尚坦, 等. 利用多特征融合和集成学习的极化SAR图像分类[J]. 雷达学报, 2016, 5(6): 692–700. doi: 10.12000/JR15132

    SUN Xun, HUANG Pingping, TU Shangtan, et al. Polarimetric SAR image classification using multiple-feature fusion and ensemble learning[J]. Journal of Radars, 2016, 5(6): 692–700. doi: 10.12000/JR15132
    [39]
    王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040
    [40]
    苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [41]
    贺丰收, 张涛, 芦达. 机载对海探测雷达发展趋势[J]. 科技导报, 2017, 35(20): 28–35. doi: 10.3981/j.issn.1000-7857.2017.20.003

    HE Fengshou, ZHANG Tao, and LU da. Progress of airborne maritime detection radar[J]. Science &Technology Review, 2017, 35(20): 28–35. doi: 10.3981/j.issn.1000-7857.2017.20.003
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]XIANG Yuming, TENG Fei, WANG Linhui, JIAO Niangang, WANG Feng, YOU Hongjian. Orthorectification of High-resolution SAR Images in Island Regions Based on Fast Multimodal Registration[J]. Journal of Radars, 2024, 13(4): 866-884. doi: 10.12000/JR24022
    [3]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [4]MA Lin, PAN Zongxu, HUANG Zhongling, HAN Bing, HU Yuxin, ZHOU Xiao, LEI Bin. Multichannel False-target Discrimination in SAR Images Based on Sub-aperture and Full-aperture Feature Learning[J]. Journal of Radars, 2021, 10(1): 159-172. doi: 10.12000/JR20106
    [5]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [6]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [7]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [8]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [9]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [10]ZHANG Shuangxi, QIAO Ning, XING Mengdao, WU Yifeng, WU Yufeng. A Novel Clutter Suppression Approach for the Space-borne Multiple Channel in the Azimuth High-resolution and Wide-swath SAR-GMTI System with an Ambiguous Doppler Spectrum[J]. Journal of Radars, 2020, 9(2): 295-303. doi: 10.12000/JR20005
    [11]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [12]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [13]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [14]Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image[J]. Journal of Radars, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [15]Fan Huaitao, Zhang Zhimin, Li Ning. Channel Phase Mismatch Calibration for Multichannel in Azimuth SAR Imaging Based on Eigen-structure Method[J]. Journal of Radars, 2018, 7(3): 346-354. doi: 10.12000/JR17012
    [16]Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053
    [17]Zhao Yao, Deng Yunkai, Wang Yu, Li Ning, Wang Wei. Study of Effect of Raw Data Compression on Azimuth Multi-channel SAR System[J]. Journal of Radars, 2017, 6(4): 397-407. doi: 10.12000/JR17030
    [18]Zhao Qingchao, Zhang Yi, Wang Robert, Wang Wei, Wang Xiangyu. Signal Reconstruction Approach for Multichannel SAR in Azimuth Based on Multiframe Super resolution[J]. Journal of Radars, 2017, 6(4): 408-419. doi: 10.12000/JR17035
    [19]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(1)

    1. 姜文,梁伟,吴一戎. 机载顺轨干涉SAR时变交轨基线校正算法. 国外电子测量技术. 2020(06): 49-54 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.4 %FULLTEXT: 16.4 %META: 73.5 %META: 73.5 %PDF: 10.2 %PDF: 10.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.7 %其他: 13.7 %其他: 0.1 %其他: 0.1 %Central District: 0.0 %Central District: 0.0 %China: 0.6 %China: 0.6 %Hanoi: 0.2 %Hanoi: 0.2 %India: 0.1 %India: 0.1 %Norway: 0.2 %Norway: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.6 %[]: 0.6 %上海: 0.6 %上海: 0.6 %临汾: 0.0 %临汾: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 17.0 %北京: 17.0 %北海: 0.0 %北海: 0.0 %南京: 1.0 %南京: 1.0 %南宁: 0.1 %南宁: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大同: 0.0 %大同: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %太原: 0.1 %太原: 0.1 %娄底: 0.0 %娄底: 0.0 %宜昌: 0.1 %宜昌: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宿迁: 0.2 %宿迁: 0.2 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.0 %常州: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 0.6 %张家口: 0.6 %张家界: 0.0 %张家界: 0.0 %成都: 0.1 %成都: 0.1 %文昌: 0.1 %文昌: 0.1 %新乡: 0.5 %新乡: 0.5 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.1 %昆明: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.0 %沈阳: 0.0 %济南: 0.0 %济南: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.8 %深圳: 0.8 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.0 %漯河: 0.0 %漳州: 0.0 %漳州: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %益阳: 0.0 %益阳: 0.0 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.2 %纽约: 0.2 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 14.6 %芒廷维尤: 14.6 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.0 %苏州: 0.0 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 38.0 %西宁: 38.0 %西安: 0.5 %西安: 0.5 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.1 %贵港: 0.1 %运城: 0.1 %运城: 0.1 %连云港: 0.0 %连云港: 0.0 %邢台: 0.1 %邢台: 0.1 %郑州: 1.5 %郑州: 1.5 %重庆: 0.2 %重庆: 0.2 %长春: 0.0 %长春: 0.0 %长沙: 0.4 %长沙: 0.4 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.9 %青岛: 0.9 %其他其他Central DistrictChinaHanoiIndiaNorwayUnited States[]上海临汾伊利诺伊州佛山六安兰州加利福尼亚州包头北京北海南京南宁厦门台北呼和浩特哥伦布唐山嘉兴圣彼得堡大同大连天津太原娄底宜昌宝鸡宿迁岳阳常州广州张家口张家界成都文昌新乡无锡日照昆明杭州武汉沈阳济南淮南淮安深圳湘潭漯河漳州焦作玉林珠海益阳石家庄秦皇岛纽约美国伊利诺斯芝加哥舟山芒廷维尤芝加哥苏州衡阳衢州西宁西安诺沃克贵港运城连云港邢台郑州重庆长春长沙阜阳阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(8179) PDF downloads(553) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint