Volume 8 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
CAO Jiming, LI Ruoming, YANG Jiyao, et al. Dual-band LFM-CW radar scheme based on photonic stretch processing[J]. Journal of Radars, 2019, 8(2): 189–196. doi: 10.12000/JR18119
Citation: CAO Jiming, LI Ruoming, YANG Jiyao, et al. Dual-band LFM-CW radar scheme based on photonic stretch processing[J]. Journal of Radars, 2019, 8(2): 189–196. doi: 10.12000/JR18119

Dual-band LFM-CW Radar Scheme Based on Photonic Stretch Processing

DOI: 10.12000/JR18119
Funds:  The National Natural Science Foundation of China (61701476, 61690191)
More Information
  • Corresponding author: LI Ruoming, rmli@ieee.org; LI Wangzhe, wzli@mail.ie.ac.cn
  • Received Date: 2018-12-25
  • Rev Recd Date: 2019-01-15
  • Publish Date: 2019-04-01
  • A dual-band LFM-CW radar scheme which is based on photonic stretch processing is proposed. The receiver which is based on a photonic frequency down-converter is able to receive the radar echoes of two bands with a single hardware. A dual polarization quadrature phase shift keying modulator is employed to implement the modulation scheme. The reference signals and echoes of two bands are modulated to orthogonally polarized light waves and sent to a Pol-demux coherent receiver through an amplifier and a filter, respectively, to perform stretch processing. In the transmitter, the reference and transmitted LFM signals with high frequency and wide bandwidth are generated by a photonic-assisted frequency multiplication module. Meanwhile, the generated signal is delayed before transmission. Thus, at the output of the coherent receiver, IF signals corresponding to two bands can be separated in the frequency domain. An experimental system operating in C- and Ku-bands with transmitting signal bandwidths of 1 and 2 GHz, respectively, is demonstrated and evaluated via a series of inverse synthetic aperture radar imaging tests, and the sampling rate of analog to digital converters is 100 MSa/s. The results show that the microwave photonics technology can provide solutions for receiving dual-band signal with a single hardware platform.

     

  • loading
  • [1]
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    [2]
    李彦兵, 杜兰, 刘宏伟, 等. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128

    LI Yanbing, DU Lan, LIU Hongwei, et al. Ground targets classification based on micro-doppler effect[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128
    [3]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison, NJ, Scitech Publishing, 2012. doi: 10.1049/SBRA020E.
    [4]
    曹思扬, 郑元芳. 雷达波形研究发展现况与趋势(英文)[J]. 雷达学报, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044

    CAO Siyang and ZHENG Yuanfang. Recent developments in radar waveforms[J]. Journal of Radars, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044
    [5]
    李堃, 梁兴东, 陈龙永, 等. 基于LFMCW体制的分布式SAR高分辨率成像方法研究[J]. 电子与信息学报, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274

    LI Kun, LIANG Xingdong, CHEN Longyong, et al. Signal model and high-resolution imaging approach for distributed SAR based on LFMCW signals[J]. Journal of Electronics &Information Technology, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274
    [6]
    CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(2): 269–278. doi: 10.1109/TAES.1971.310366
    [7]
    ZHOU Zhengshu, CACCETTA P, SIMS N C, et al. Multiband SAR data for rangeland pasture monitoring[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 170–173. doi: 10.1109/IGARSS.2016.7729035.
    [8]
    TRIZNA D B, BACHMANN C, SLETTEN M, et al. Projection pursuit classification of multiband polarimetric SAR land images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2380–2386. doi: 10.1109/36.964974
    [9]
    LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optical Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [10]
    ZHANG Fangzheng, GUO Qingshui. WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [11]
    ZHANG Fangzheng, GAO Bindong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
    [12]
    ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
    [13]
    SCOTTI F, LAGHEZZA F, and BOGONI A. Pandora: Single unit fully coherent S and X band software defined radar[C]. Proceedings of the 16th International Radar Symposium, Dresden, Germany, 2015: 446–450. doi: 10.1109/IRS.2015.7226243.
    [14]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [15]
    MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
    [16]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
    [17]
    LI Ruoming, DING Manlai, WEN Zhilei, et al. A photonic receiver based on stretch processing for synthetic aperture radar[C]. Proceedings of 2017 IEEE Photonics Conference, Orlando, USA, 2017: 677–678. doi: 10.1109/IPCon.2017.8116279.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3653) PDF downloads(313) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint