Volume 5 Issue 4
Aug.  2016
Turn off MathJax
Article Contents
Hu Yinfu, Feng Jinjun. New Vacuum Electronic Devices for Radar[J]. Journal of Radars, 2016, 5(4): 350-360. doi: 10.12000/JR16078
Citation: Hu Yinfu, Feng Jinjun. New Vacuum Electronic Devices for Radar[J]. Journal of Radars, 2016, 5(4): 350-360. doi: 10.12000/JR16078

New Vacuum Electronic Devices for Radar

DOI: 10.12000/JR16078
Funds:

The National Ministries Foundation

  • Received Date: 2016-06-02
  • Rev Recd Date: 2016-07-18
  • Publish Date: 2016-08-28
  • Vacuum Electronic Devices (VEDs) which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

     

  • loading
  • [1]
    廖复疆. 真空电子技术: 信息化武器装备的心脏(第2版)[M]. 北京: 国防工业出版社, 2008: 2-3. Liao Fu-jiang. Vacuum Electronics Technology: The Heart of Information Weapons and Equipment (2nd Edition)[M]. Beijing: National Defense Industry Press, 2008: 2-3.
    [2]
    赵正平. 固态微波器件与电路的新进展[J]. 中国电子科学研究院学报, 2007, 2(4): 329-335. Zhao Zheng-ping. The new developments of solid state microwave devices and circuits[J]. Journal of CAEIT, 2007, 2(4): 329-335.
    [3]
    Qiu J X, Levush B, Pasour J, et al.. Vacuum tube amplifiers[J]. IEEE Microwave Magazine, 2009, 10(7): 38-51.
    [4]
    Armstrong C. The vitality of vacuum electronics[C]. 14th IEEE International Vacuum Electronics Conference, Paris, France, 2013: 1-2.
    [5]
    Abrams R H and Parker R K. Introduction to the MPM: what it is and where it might fit[C]. IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 1993, 1: 107-110.
    [6]
    Hajduk J. Modern EW systems require efficient RF power management[J]. Microwave Product Digest, 2011: 1-6.
    [7]
    崔建玲, 邵淑伟, 孟晓君. 一种机载100 W 6~18 GHz连续波微波功率模块[J]. 真空电子技术, 2015(3): 29-31. Cui Jian-ling, Shao Shu-wei, and Meng Xiao-jun. A 100 W 6~18 GHz CW MPM for airborne application[J]. Vacuum Electronics, 2015(3): 29-31.
    [8]
    Munehiro T, Yoshida M, Tomikawa K, et al.. Development of an S-band 1 kW pulsed mini-TWT for MPMs[C]. 8th IEEE International Vacuum Electronics Conference, Kitakyushu, 2007: 1-2.
    [9]
    寇建勇, 魏义学, 张宏志, 等. 雷达用X波段脉冲MPM的小型化行波管的研制[J]. 真空电子技术, 2014(1): 26-29. Kou Jian-yong, Wei Yi-xue, Zhang Hong-zhi, et al.. Development of mini-TWT for an X-band pulsed MPM applied in radar system[J]. Vacuum Electronics, 2014(1): 26-29.
    [10]
    Tsutaki K, Seura R, Fujiwara E, et al.. Development of Ka-band 100-W peak power MMPM[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 660-664.
    [11]
    Cui Yan-jun, Chen Bo, Lu Qi-ru, et al.. Reliability of a Ka-band airborne millimeter wave power module[C]. 16th IEEE International Vacuum Electronics Conference, Beijing, China, 2015: 1-2.
    [12]
    Chen Bo, Cui Yan-jun, Feng Jing-jun, et al.. The research of Ka-band helix travelling wave tube for millimeter wave power module[C]. 16th IEEE International Vacuum Electronics Conference, Beijing, China, 2015: 1-2.
    [13]
    Kowalczyk R, Zubyk A, Meadows C, et al.. High efficiency E-band MPM for communications application[C]. 17th IEEE International Vacuum Electronics Conference, Monterey, USA, 2016: 513-514.
    [14]
    Kowalczyk R, Zubyk A, Meadows C, et al.. A 100 Watt W-band MPM TWT[C]. 14th IEEE International Vacuum Electronics Conference, Paris, France, 2013: 1-2.
    [15]
    Cai Jun, Feng Jin-jun, Hu Yin-fu, et al.. 10 GHz bandwidth 100 Watt W-band folded waveguide pulsed TWTs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 620-621.
    [16]
    Feng Jin-jun, Cai Jun, Wu Xian-ping, et al.. Design investigation of 10 W W-band folded waveguide TWT[C]. IEEE International Vacuum Electronics Conference, Kitakyushu, Japan, 2007.
    [17]
    Hu Yin-fu, Feng Jin-jun, Cai Jun, et al.. Performance enhancement of W-band CW TWT[C]. IEEE International Vacuum Electronics Conference, Bangalore, India, 2011: 21-22.
    [18]
    Hu Yin-fu, Feng Jin-jun, Cai Jun, et al.. Development of W-band CW TWT amplifier[C]. 2012 IEEE International Vacuum Electronics Conference, Monterey, USA, 2012: 295-296.
    [19]
    Hu Yin-fu, Feng Jin-jun, Chen Ji, et al.. Design of a 50 Watts level W-band FWG TWT for communication[C]. 8th UK, Europe, China Millimetre Waves and THz Technology, Workshop (VCMMT), Cardiff, UK, 2015: 68-70.
    [20]
    Levush B. Vacuum electronics: status and trends[J]. IEEE Aerospace Electronic Systems Magazine, 2007, 22(9): 971-976.
    [21]
    Munehiro T, Kobayashi J, Matsuoka J, et al.. Development of an X-band 800 W pulsed mini-TWT for active phased array radar modules[C]. 15th IEEE International Vacuum Electronics Conference, Monterey, USA, 2014: 1-2.
    [22]
    Hu Yin-fu, Feng Jin-jun, Liu Ming-hui, et al.. Progress of an integrated TWT for phased array application[C]. 14th IEEE International Vacuum Electronics Conference, Paris, France, 2013: 1-2.
    [23]
    Hu Yin-fu, Feng Jin-jun, Li Tian-yi, et al.. Progress of Integrated TWT[C]. 15th IEEE International Vacuum Electronics Conference, Monterey, USA, 2014: 1-2.
    [24]
    刘超, 杨明, 刘志刚. 近太赫兹频段功率源技术发展与应用[J]. 微波学报, 2015(3): 6-9. Liu Chao, Yang Ming, and Liu Zhi-gang. Developments and application in Near-Terahertz power devices[J]. Journal of Microwaves, 2015(3): 6-9.
    [25]
    李含雁. 340 GHz返波管折叠波导高频结构的设计以及微细加工工艺的研究[D]. [博士论文], 电子科学研究院, 2013. Li Han-yan. The folded waveguide interaction structure design and micro-fabrication techniques research of 340 GHz backward wave tube[D]. [Ph.D. dissertation], China Academy of Electronics and Information Technology, 2013.
    [26]
    Dobroiu A, Yamashita M, Ohshima Y N, et al.. Terahertz imaging system based on a backward-wave oscillator[J]. Applied Optics, 2004, 43(30): 5637-5646.
    [27]
    Gompf B, Gebert N, Heer H, et al.. Polarization contrast terahertz-near-field imaging of anisotropic conductors[J]. Applied Physics Letters, 2007, 90: 082104.
    [28]
    Gorshunov B, Volkov A, Spektor I, et al.. Terahertz BWO spectroscopy[J]. IEEE Journal of Infrared and Millimeter Waves, 2005, 26(9): 1217-1240.
    [29]
    Manzhos S, Schnemann K, Sosnitsky S, et al.. Clinotron: a promising source for THz regions[J]. Radio Physics and Radio Astronomy, 2000, 5(3): 265-273.
    [30]
    Bratman V L, Gintsburg V A, Grishin Y A, et al.. Pulsed wideband orotrons of millimeter and submillimeter waves[J]. Radiophysics Quantum Elecronics, 2006, 49(11): 866-871.
    [31]
    Booske J H, Dobbs R J, and Joye C D. Vacuum electronic high power Terahertz source[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75.
    [32]
    Kreischer K E, Tucek J C, Gallagher D A, et al.. Operation of a compact 0.65 THz source[C]. 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, 2008: 1-2.
    [33]
    蔡军, 邬显平, 冯进军. 太赫兹折叠波导慢波结构止带振荡器[J]. 太赫兹科学与电子信息学报, 2014, 12(2): 162-165. Cai Jun, Wu Xian-ping, and Feng Jin-jun. THz folded waveguide slow wave structure stop-band oscillator[J]. Journal of Terahertz Sciense and Electronic Information Technology, 2014, 12(2): 162-165.
    [34]
    Kreischer K E, Tucek J C, Bastenet M A, et al.. 220 GHz power amplifier testing at Northrop Grumman[C]. 14th IEEE International Vacuum Electronics Conference, Paris, France, 2013: 1-2.
    [35]
    Zhou Quan-feng, Xu Ao, Yan Lei, et al.. Development of a 0.22 THz folded waveguide travelling wave tube[C]. 15th IEEE International Vacuum Electronics Conference, Monterey, USA, 2014: 1-2.
    [36]
    Pan Pan, Hu Yin-fu, Liu Jingkai, et al.. Preliminary design of a 220 GHz folded waveguide TWT[C]. 15th IEEE International Vacuum Electronics Conference, Monterey, USA, 2014: 1-2.
    [37]
    Pan Pan, Hu Yin-fu, Li Tian-yi, et al.. Progress of G band folded waveguide TWT[C]. 16th IEEE International Vacuum Electronics Conference, Beijing, China, 2015: 1-2.
    [38]
    Basten M A, Tucek J C, Gallagher D A, et al.. 233 GHz High power amplifier development at Northrop Grumman[C]. 17th IEEE International Vacuum Electronics Conference, Monterery, USA, 2016: 43-44.
    [39]
    Tucek J C, Basten M A, Gallagher D A, et al.. 0.850 THz vacuum electronic power amplifier[C]. 15th IEEE International Vacuum Electronics Conference, Monterey, USA, 2014: 153-154.
    [40]
    Tucek J C, Basten M A, Gallagher D A, et al.. Operation of a compact 1.03 THz power amplifier[C]. 17th IEEE International Vacuum Electronics Conference, Monterery, USA, 2016: 37-38.
    [41]
    字张雄. 大功率行波管的现状与发展[J]. 真空电子技术, 2008(5): 58-61. Zi Zhang-xiong. The actualities and developments of high power TWT[J]. Vacuum Electronics, 2008(5): 58-61.
    [42]
    包广建, 杨金生, 宋振红, 等. 高平均功率前向波放大管研制[J]. 真空电子技术, 2014(3): 1-4. Bao Guang-jian, Yang Jin-sheng, Song Zhen-hong, et al.. Design of a high average power crossed-field amplifier type[J]. Vacuum Electronics, 2014(3): 1-4.
    [43]
    丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8): 1989-1995. Ding Yao-gen, Liu Pu-kun, Zhang Zhao-chuan, et al.. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995.
    [44]
    丁耀根, 刘濮鲲, 张兆传, 等. 大功率速调管的技术现状和研究进展[J]. 真空电子技术, 2010(6): 1-11. Ding Yao-gen, Liu Pu-kun, Zhang Zhao-chuan, et al.. The state art and research progress of high power klystron[J]. Vacuum Electronics, 2010(6): 1-11.
    [45]
    Linde G J, Ngo M T, Danly B G, et al.. WARLOC: a high-power coherent 94 GHz radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1102-1117.
    [46]
    Chu K R, Chen H Y, Hung C L, et al.. Ultra-high-gain gyrotron traveling-wave amplifier[J]. Physics Review Letters, 1998, 81: 4760-4765.
    [47]
    Wang Efeng, Li An, Zeng Xu, et al.. Preliminary experiment research on the w-band gyrotron traveling wave tube[C]. 16th IEEE International Vacuum Electronics Conference, Beijing, China, 2015: 1-2.
    [48]
    李天明. 相对论磁控管的理论与实验研究[D]. [博士论文], 电子科技大学, 2005. Li Tian-ming. Theoretical and experimental research of relativistic magnetron[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2005.
    [49]
    卢慧玲, 杨春才, 马寒. 美国反电子设备高功率微波先进导弹的现状及前景分析[J]. 飞航导弹, 2014(4): 30-34. Lu Hui-ling, Yang Chun-cai, and Ma Han. Analysis of the present situation and prospect of high power microwave advanced missile in the united states of America[J]. Aerodynamic Missile Journal, 2014(4): 30-34.
    [50]
    钱宝良. 国外高功率微波技术的演技现状和发展趋势[J]. 真空电子技术, 2015(2): 2-7. Qian Bao-liang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 2-7.
    [51]
    曾旭, 冯进军. 高功率微波源的现状及其发展[J]. 真空电子技术, 2015(2): 18-27. Zeng Xu and Feng Jin-jun. Current situation and developments of high power microwave sources[J]. Vacuum Electronics, 2015(2): 18-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3130) PDF downloads(1054) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint