基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究

王博弘 申彪 穆文星 刘涛

王博弘, 申彪, 穆文星, 等. 基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究[J]. 雷达学报(中英文), 2025, 14(2): 293–308. doi: 10.12000/JR24239
引用本文: 王博弘, 申彪, 穆文星, 等. 基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究[J]. 雷达学报(中英文), 2025, 14(2): 293–308. doi: 10.12000/JR24239
WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, 2025, 14(2): 293–308. doi: 10.12000/JR24239
Citation: WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, 2025, 14(2): 293–308. doi: 10.12000/JR24239

基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究

DOI: 10.12000/JR24239 CSTR: 32380.14.JR24239
基金项目: 国家自然科学基金(62171452)
详细信息
    作者简介:

    王博弘,硕士生,主要研究方向为雷达超分辨技术、雷达极化信息处理等

    申 彪,博士生,主要研究方向为极化雷达波形设计、雷达极化抗干扰和雷达极化信息处理等

    穆文星,博士生,主要研究方向为雷达极化信息处理和极化SAR目标检测等

    刘 涛,博士,教授,博士生导师,主要研究方向为雷达极化信息处理、新体制雷达技术及雷达电子战等

    通讯作者:

    刘涛 liutao1018@sina.com

  • 责任主编:郝程鹏 Corresponding Editor: HAO Chengpeng
  • 中图分类号: TN957

Research on Super-resolution Methods for Radar Targets Based on Bat-inspired Spectrogram Correlation and Transformation Models(in English)

Funds: The National Natural Science Foundation of China (62171452)
More Information
  • 摘要: 传统雷达分辨能力主要利用模糊函数来进行分析,其极限分辨力一般用瑞利限表征。自然界中蝙蝠具有相当敏锐的听觉系统,学者提出谱相关及变换(SCAT)模型对蝙蝠听觉系统建模,探索了蝙蝠的超分辨原理,为突破雷达目标常规(瑞利)分辨力提供了一个可能的途径。为了进一步提高SCAT模型的分辨性能,通过抑制距离像负半轴和原点处多余的波瓣,改进了基向量解卷积法和基带SCAT (BSCT)两种蝙蝠超分辨模型,同时提出可靠分辨力概念及计算方法,统一了SCAT分辨力与瑞利分辨力的衡量标准,对比验证了可靠分辨力概念的合理性以及改进算法的有效性。仿真与实测实验表明,改进超分辨算法均获得了可观的分辨力提升,其中改进基向量解卷积法性能最佳,将原基向量解卷积法的分辨力提高约2 dB,同时将匹配滤波分辨力提高约5 dB。

     

  • 图  1  目标间距为0.5倍瑞利分辨力时基向量解卷积仿真图

    Figure  1.  Simulation of basis vector deconvolution when the target spacing is 0.5 times the Rayleigh resolution

    图  2  改进BSCT分辨效果

    Figure  2.  Improved BSCT resolution

    图  3  目标间距为0.2倍瑞利分辨力时基向量解卷积仿真图

    Figure  3.  Simulation of basis vector deconvolution with target spacing of 0.2 times the Rayleigh resolution

    图  4  BSCT的分辨效果随两目标相对距离变化

    Figure  4.  The resolution of BSCT varies with relative distance of two targets

    图  5  BSCT的改进算法分辨效果随两目标相对距离变化

    Figure  5.  The resolution effect of the improved BSCT algorithm varies with relative distance of two targets

    图  6  基向量解卷积法的分辨效果随两目标相对距离变化

    Figure  6.  The resolution effect of the basis vector deconvolution method varies with the relative distance of two targets

    图  7  寻找分辨效果最好的K

    Figure  7.  Look for the K value with the best resolution

    图  8  5种处理方式对比图

    Figure  8.  Comparison chart of the five processing methods

    图  9  幅度比和相位差对不同信号处理方式分辨效果的影响

    Figure  9.  The effect of amplitude ratio and phase difference on the resolution of different signal processing methods

    图  10  实验条件

    Figure  10.  Experimental conditions

    图  11  信号采样与数据导入

    Figure  11.  Signal sampling and data importing

    图  12  实验结果

    Figure  12.  Experimental results

    图  1  Simulation of basis vector deconvolution at a target spacing of 0.5 times the Rayleigh resolution

    图  2  Improved BSCT resolution

    图  3  Simulation of basis vector deconvolution at a target spacing of 0.2 times the Rayleigh resolution

    图  4  BSCT resolution as a function of the relative distance between two targets

    图  5  Resolution effect of the improved BSCT algorithm as a function of the relative distance between two targets

    图  6  Resolution effect of the basis vector deconvolution method as a function of the relative distance between two targets

    图  7  Look for the K value with the best resolution

    图  8  Comparison chart of the five processing methods

    图  9  Effect of amplitude ratio and phase difference on the resolution of different signal processing methods

    图  10  Experimental conditions

    图  11  Signal sampling and data import

    图  12  Experimental results

    表  1  仿真参数设置

    Table  1.   Simulation parameter settings

    参数 数值
    脉冲脉宽${T_{\text{p}}}$ 10 μs
    脉冲带宽${B_{\text{c}}}$ 40 ${\text{MHz}}$
    耳蜗单元滤波器组数目N 81
    相邻滤波器中心频率差异$\Delta {f_i}$ 0.5 ${\text{MHz}}$
    滤波器阶数 128
    滤波器带通宽度B 1 ${\text{MHz}}$
    下载: 导出CSV

    表  2  不同信号处理方法的对比

    Table  2.   Comparison of different signal processing methods

    信号处理方法 无相位差 有相位差 幅度差异对分辨的影响
    分辨力 可靠分辨力 分辨力 可靠分辨力
    匹配滤波处理 ${1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ 与相位差有关,等幅反相时为无穷小 与相位差有关,大于瑞利分辨力 幅度差越大,分辨效果越差
    BSCT $ < {1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ $ < {1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ 无影响
    改进BSCT $ < {{0.7} / {{B_{\text{c}}}}}$ ${{0.7} / {{B_{\text{c}}}}}$ $ < {{0.7} / {{B_{\text{c}}}}}$ ${{0.7} / {{B_{\text{c}}}}}$ 无影响
    基向量解卷积 $ < {{0.5} / {{B_{\text{c}}}}}$ ${{0.5} / {{B_{\text{c}}}}}$ 效果变差 无影响
    改进基向量解卷积 $ < {{0.31} / {{B_{\text{c}}}}} $ $ {{0.31} / {{B_{\text{c}}}}} $ 效果变差 无影响
    下载: 导出CSV

    表  3  实测雷达参数

    Table  3.   Measured radar parameters

    参数 数值
    脉冲脉宽${T_{\text{p}}}$ 1 μs
    脉冲带宽${B_{\text{c}}}$ 100 MHz
    中心频率${f_0}$ 19 GHz
    采样率${f_{\text{s}}}$ 80 GHz
    耳蜗单元滤波器组数目N 81
    相邻滤波器中心频率差异$\Delta {f_i}$ 1.25 MHz
    滤波器阶数 128
    滤波器带通宽度B 2.5 MHz
    下载: 导出CSV

    表  1  Simulation parameter settings

    Parameters Value
    Pulse width ${T_{\text{p}}}$ 10 μs
    Bandwidth ${B_{\text{c}}}$ 40 MHz
    Number of cochlear unit filter banks N 81
    Difference in the center frequency of adjacent filters $\Delta {f_i}$ 0.5 MHz
    Filter order 128
    Filter bandpass width B 1 MHz
    下载: 导出CSV

    表  2  Comparison of different signal processing methods

    Signal processing methods No phase difference Phase difference Effect of amplitude differences on discrimination
    Resolution Reliable resolution Resolution Reliable resolution
    Matched filtering ${1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ Related to the phase difference, infinitesimal for equal amplitude inverse phase Related to the phase difference, greater than the Rayleigh resolution The larger the difference in amplitude, the worse the resolution
    BSCT $ < {1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ $ < {1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${1 \mathord{\left/ {\vphantom {1 {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ Unaffected
    Improved BSCT $ < {{0.7} \mathord{\left/ {\vphantom {{0.7} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${{0.7} \mathord{\left/ {\vphantom {{0.7} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ $ < {{0.7} \mathord{\left/ {\vphantom {{0.7} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${{0.7} \mathord{\left/ {\vphantom {{0.7} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ Unaffected
    Basis-vector deconvolution $ < {{0.5} \mathord{\left/ {\vphantom {{0.5} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ ${{0.5} \mathord{\left/ {\vphantom {{0.5} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}}$ Effect worsened Unaffected
    Improved basis-vector deconvolution $ < {{0.31} \mathord{\left/ {\vphantom {{0.31} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}} $ $ {{0.31} \mathord{\left/ {\vphantom {{0.31} {{B_{\text{c}}}}}} \right. } {{B_{\text{c}}}}} $ Effect worsened Unaffected
    下载: 导出CSV

    表  3  Measured radar parameters

    Parameters Value
    Pulse width ${T_{\text{p}}}$ 1 μs
    Bandwidth ${B_{\text{c}}}$ 100 MHz
    Center frequency ${f_0}$ 19 GHz
    Sampling rate ${f_{\text{s}}}$ 80 GHz
    Number of cochlear unit filter banks N 81
    Difference in the center frequency of
    adjacent filters $\Delta {f_i}$
    1.25 MHz
    Filter order 128
    Filter bandpass width B 2.5 MHz
    下载: 导出CSV
  • [1] 陈岁新. 雷达群目标超分辨技术研究[D]. [硕士论文], 电子科技大学, 2022: 1–5. doi: 10.27005/d.cnki.gdzku.2022.001266.

    CHEN Suixin. Study on super-resolution for radar detection of group targets[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022: 1–5. doi: 10.27005/d.cnki.gdzku.2022.001266.
    [2] FENG Junjie, SUN Yinan, and JI Xiuxia. High-resolution ISAR imaging based on improved sparse signal recovery algorithm[J]. Wireless Communications and Mobile Computing, 2021, 2021: 5541116. doi: 10.1155/2021/5541116.
    [3] 倪晋麟, 储晓彬, 林幼权. 基于去卷积距离超分辨方法的机理及限制条件[J]. 系统工程与电子技术, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.

    NI Jinlin, CHU Xiaobin, and LIN Youquan. The principle and limitation of the range super-resolution algorithms based on deconvolution[J]. Systems Engineering and Electronics, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.
    [4] 王永良. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 18–52, 306–336.

    WANG Yongliang. Spatial Spectrum Estimation Theory and Algorithms[M]. Beijing: Tsinghua University Press, 2004: 18–52, 306–336.
    [5] DING Shanshan, TONG Ningning, ZHANG Yongshun, et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 304–312. doi: 10.1049/iet-rsn.2016.0233.
    [6] 王璟琛. 密集群目标分辨方法研究[D]. [硕士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.001665.

    WANG Jingchen. Research on target discrimination method of dense cluster[D]. [Master dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.001665.
    [7] 陈希信. 基于LFM信号频域去斜和压缩感知的雷达距离超分辨[J]. 现代雷达, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.

    CHEN Xixin. Radar range super-resolution based on LFM frequency dechirp and compressive sensing[J]. Modern Radar, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.
    [8] WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366.
    [9] 康乐, 张群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.

    KANG Le, ZHANG Qun, LI Taoyong, et al. Imaging method of downward-looking three-dimensional synthetic aperture radar based on bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.
    [10] SIMMONS J A, FERRAGAMO M, MOSS C F, et al. Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation[J]. Journal of Comparative Physiology A, 1990, 167(5): 589–616. doi: 10.1007/BF00192654.
    [11] SIMMONS J A, SAILLANT P A, WOTTON J M, et al. Composition of biosonar images for target recognition by echolocating bats[J]. Neural Networks, 1995, 8(7/8): 1239–1261. doi: 10.1016/0893-6080(95)00059-3.
    [12] SCHMIDT S. Perception of structured phantom targets in the echolocating bat, Megaderma lyra[J]. The Journal of the Acoustical Society of America, 1992, 91(4): 2203–2223. doi: 10.1121/1.403654.
    [13] 杨琳. 镫骨、耳蜗及其Corti器的建模与生物力学研究[D]. [博士论文], 复旦大学, 2009: 17–34. doi: 10.7666/d.y1970550.

    YANG Lin. Modeling and biomechanical analysis of the stapes, cochlea and organ of Corti[D]. [Ph.D. dissertation], Fudan University, 2009: 17–34. doi: 10.7666/d.y1970550.
    [14] CHI T, RU Powen, and SHAMMA S A. Multiresolution spectrotemporal analysis of complex sounds[J]. The Journal of the Acoustical Society of America, 2005, 118(2): 887–906. doi: 10.1121/1.1945807.
    [15] 秦晓瑜. 基于听觉仿生的听觉谱生成方法研究[D]. [硕士论文], 东北师范大学, 2013: 1–18.

    QIN Xiaoyu. Study on the generation method of auditory spectrum based on auditory bionics[D]. [Master dissertation], Northeast Normal University, 2013: 1–18.
    [16] SAILLANT P A, SIMMONS J A, DEAR S P, et al. A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 1993, 94(5): 2691–2712. doi: 10.1121/1.407353.
    [17] MATSUO I, KUNUGIYAMA K, and YANO M. An echolocation model for range discrimination of multiple closely spaced objects: Transformation of spectrogram into the reflected intensity distribution[J]. The Journal of the Acoustical Society of America, 2004, 115(2): 920–928. doi: 10.1121/1.1642626.
    [18] MATSUO I and YANO M. An echolocation model for the restoration of an acoustic image from a single-emission echo[J]. The Journal of the Acoustical Society of America, 2004, 116(6): 3782–3788. doi: 10.1121/1.1811411.
    [19] WIEGREBE L. An autocorrelation model of bat sonar[J]. Biological Cybernetics, 2008, 98(6): 587–595. doi: 10.1007/s00422-008-0216-2.
    [20] PEREMANS H and HALLAM J. The spectrogram correlation and transformation receiver, revisited[J]. The Journal of the Acoustical Society of America, 1998, 104(2): 1101–1110. doi: 10.1121/1.423326.
    [21] SIMON R, KNÖRNSCHILD M, TSCHAPKA M, et al. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range[J]. Frontiers in Physiology, 2014, 5: 64. doi: 10.3389/fphys.2014.00064.
    [22] PARK M and ALLEN R. Pattern-matching analysis of fine echo delays by the spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 2010, 128(3): 1490–1500. doi: 10.1121/1.3466844.
    [23] SIMMONS J A, SAILLANT P A, FERRAGAMO M J, et al. Auditory Computations for Biosonar Target Imaging in Bats[M]. HAWKINS H L, MCMULLEN T A, POPPER A N, et al. Auditory Computation. New York: Springer, 1996: 401–468. doi: 10.1007/978-1-4612-4070-9_9.
    [24] GEORGIEV K, BALLERI A, STOVE A, et al. Baseband version of the bat-inspired spectrogram correlation and transformation receiver[C]. 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485152.
    [25] GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired two target resolution at radio frequencies[C]. 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 436–440. doi: 10.1109/RADAR.2017.7944242.
    [26] GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired processing of radar target echoes[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1402–1409. doi: 10.1049/iet-rsn.2018.5241.
    [27] 成彬彬. 自适应雷达波形的仿生处理研究[D]. [博士论文], 清华大学, 2009.

    CHENG Binbin. Research on bionic processing for auto-adaptive radar waveform[D]. [Ph.D. dissertation], Tsinghua University, 2009.
    [28] 苏梦娜, 梁红, 杨长生. 基于SCAT模型的水下多目标高分辨仿生成像方法[J]. 水下无人系统学报, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.

    SU Mengna, LIANG Hong, and YANG Changsheng. Bionic imaging of underwater multiple targets with high resolution based on SCAT model[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.
    [29] CHEN Ming, BATES M E, and SIMMONS J A. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17288–17295. doi: 10.1073/pnas.2001105117.
    [30] CHEN Ming, HARO S, SIMMONS A M, et al. A comprehensive computational model of animal biosonar signal processing[J]. PLOS Computational Biology, 2021, 17(2): e1008677. doi: 10.1371/journal.pcbi.1008677.
    [31] BALLERI A, GRIFFITHS H, and BAKER C. Biologically-Inspired Radar and Sonar: Lessons from Nature[M]. Edison: SciTech Publishing, 2017: 1–81.
    [32] 丁鹭飞, 耿富禄, 陈建春. 雷达原理[M]. 6版. 北京: 电子工业出版社, 2020: 210–211, 348–360.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles[M]. 6th ed. Beijing: Publishing House of Electronics Industry, 2020: 210–211, 348–360.
    [33] 王罗胜斌, 王雪松, 徐振海. 雷达极化域调控超分辨的原理与方法[J]. 中国科学: 信息科学, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.

    WANG Luoshengbin, WANG Xuesong, and XU Zhenhai. Principle and approach to polarization modulation for radar super-resolution[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.
    [34] WANG Luoshengbin, XU Zhenhai, DONG Wei, et al. A scheme of polarimetric superresolution for multitarget detection and localization[J]. IEEE Signal Processing Letters, 2021, 28: 439–443. doi: 10.1109/LSP.2021.3058007.
  • 加载中
图(24) / 表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-01
  • 修回日期:  2025-02-19
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回