基于干涉相位的SAR有源欺骗干扰检测的性能分析

李兆弘 徐华平 段书航 李婧雯

李兆弘, 徐华平, 段书航, 等. 基于干涉相位的SAR有源欺骗干扰检测的性能分析[J]. 雷达学报(中英文), 2024, 13(6): 1327–1336. doi: 10.12000/JR24162
引用本文: 李兆弘, 徐华平, 段书航, 等. 基于干涉相位的SAR有源欺骗干扰检测的性能分析[J]. 雷达学报(中英文), 2024, 13(6): 1327–1336. doi: 10.12000/JR24162
LI Zhaohong, XU Huaping, DUAN Shuhang, et al. Performance analysis of SAR active deception jamming detection based on interferometric phase[J]. Journal of Radars, 2024, 13(6): 1327–1336. doi: 10.12000/JR24162
Citation: LI Zhaohong, XU Huaping, DUAN Shuhang, et al. Performance analysis of SAR active deception jamming detection based on interferometric phase[J]. Journal of Radars, 2024, 13(6): 1327–1336. doi: 10.12000/JR24162

基于干涉相位的SAR有源欺骗干扰检测的性能分析

DOI: 10.12000/JR24162
基金项目: 国家重点研发计划(2002YFB3902302),上海航天科技创新基金(SAST2022-048)
详细信息
    作者简介:

    李兆弘,博士生,主要研究方向为星载合成孔径雷达处理和目标检测等

    徐华平,博士,教授,博士生导师,主要研究方向为高分辨率微波雷达三维和四维信息获取、微波雷达图像处理和应用等

    段书航,硕士,主要研究方向为InSAR数据处理

    李婧雯,博士生,主要研究方向为SAR干涉处理

    通讯作者:

    李兆弘 lizhaohong9712@buaa.edu.cn

  • 责任主编:代大海 Corresponding Editor: DAI Dahai
  • 中图分类号: TN974; TN95

Performance Analysis of SAR Active Deception Jamming Detection Based on Interferometric Phase

Funds: The National Key Research and Development Program of China (2002YFB3902302), SAST Foundation of China (SAST2022-048)
More Information
  • 摘要: 对基于干涉相位的合成孔径雷达(SAR)有源欺骗干扰检测进行了性能分析。首先基于真实场景和虚假目标的斜距向局部条纹频率概率分布,推导了欺骗干扰检测概率的显式表达式。分别分析了垂直基线长度、干信比和局部条纹频率估计窗口尺寸3个因素对欺骗干扰检测概率(TPR)的影响。进而分析了在给定虚警概率(FPR)时,SAR系统能够达到检测概率要求时所需的垂直基线长度,为SAR系统的基线设计提供了理论依据。在现有低轨SAR参数条件下,要得到更大的干扰检测概率,所需垂直基线长度也越大,因此,在设计SAR系统的基线时,既要保证垂直基线足够大可满足检测概率的要求,还需要兼顾真实场景的相干系数,垂直基线不能太大,满足场景可进行干涉的条件。最后,对理论分析的结论进行了仿真验证。理论分析与实验结果表明:在虚警概率固定的情况下,一定范围内垂直基线长度越大/干信比越大/局部条纹频率估计窗口越大,则干扰检测概率越大。

     

  • 图  1  SAR有源欺骗干扰几何关系

    Figure  1.  Geometric relationship of active deceptive jamming in SAR

    图  2  干信比与检测概率关系图

    Figure  2.  Relationship between JSR and detection probability

    图  3  估计窗口尺寸与检测概率关系图

    Figure  3.  Relationship between estimated window size and detection probability

    图  4  垂直基线长度与检测概率关系图

    Figure  4.  Relationship between vertical baseline length and detection probability

    图  5  理论ROC曲线

    Figure  5.  Theoretical ROC curves

    图  6  SAR欺骗干扰前后SAR图像对比

    Figure  6.  Comparison of SAR images before and after deceptive jamming

    图  7  不同垂直基线长度下的干涉相位图

    Figure  7.  Interferometric phase maps at different vertical baseline lengths

    图  8  不同垂直基线长度下的局部条纹频率估计结果

    Figure  8.  Local stripe frequency estimation results at different vertical baseline lengths

    图  9  仿真数据ROC曲线

    Figure  9.  ROC curves for simulated data

    表  1  固定参数表

    Table  1.   Fixed parameters table

    参数 数值
    中心斜距 1300 km
    下视角 50°
    斜距向采样间隔 1.2 m
    波长 0.0375 m
    真实场景信噪比 15 dB
    下载: 导出CSV
  • [1] 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.

    HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
    [2] 韩朝赟, 岑熙, 崔嘉禾, 等. 纹理异常感知SAR自监督学习干扰抑制方法[J]. 雷达学报, 2023, 12(1): 154–172. doi: 10.12000/JR22168.

    HAN Zhaoyun, CEN Xi, CUI Jiahe, et al. Self-supervised learning method for SAR interference suppression based on abnormal texture perception[J]. Journal of Radars, 2023, 12(1): 154–172. doi: 10.12000/JR22168.
    [3] 陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.

    CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
    [4] CHEN Si, LIN Yang, YUAN Yue, et al. Airborne SAR suppression of blanket jamming based on second order blind identification and fractional order Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212014. doi: 10.1109/TGRS.2023.3294236.
    [5] LANG Wenhui, TANG Yaling, MEI Shengqun, et al. An anti-2D deceptive jamming method for multi-baseline interferometric SAR based on co-localization jammer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5388–5400. doi: 10.1109/JSTARS.2022.3185254.
    [6] YANG Kaizhi, MA Fangfang, RAN Da, et al. Fast generation of deceptive jamming signal against spaceborne SAR based on spatial frequency domain interpolation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4701015. doi: 10.1109/TGRS.2021.3065312.
    [7] 曾铮, 张福博, 陈龙永, 等. 基于多输入多输出合成孔径雷达的二维混合基线抗欺骗干扰方法[J]. 雷达学报, 2019, 8(1): 90–99. doi: 10.12000/JR18118.

    ZENG Zheng, ZHANG Fubao, CHEN Longyong, et al. A two-dimensional mixed baseline method based on MIMO-SAR for countering deceptive jamming[J]. Journal of Radars, 2019, 8(1): 90–99. doi: 10.12000/JR18118.
    [8] WANG Wenjing, WU Junjie, PEI Jifang, et al. An antideceptive jamming method for multistatic synthetic aperture radar based on collaborative localization and spatial suppression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2757–2768. doi: 10.1109/JSTARS.2020.2997345.
    [9] LI Chen and ZHU Daiyin. The detection of deception jamming against SAR based on dual-aperture antenna cross-track interferometry[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343274.
    [10] JI Penghui and XING Shiqi. An anti-jamming method against SAR stationary deceptive targets based on DPCA processing[C]. 2019 IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 264–268. doi: 10.1109/SIPROCESS.2019.8868613.
    [11] 姜予名, 李景文, 孙兵. 单站直达波欺骗干扰检测与抑制的DPCA方法[J]. 系统工程与电子技术, 2021, 43(6): 1524–1532. doi: 10.12305/j.issn.1001-506X.2021.06.09.

    JIANG Yuming, LI Jingwen, and SUN Bing. DPCA method for detection and suppression of monostatic direct-wave deceptive jamming[J]. Systems Engineering and Electronics, 2021, 43(6): 1524–1532. doi: 10.12305/j.issn.1001-506X.2021.06.09.
    [12] YANG Guang, LI Shaobin, and CAO Xinghui. SAR counter deception jamming based on radiometric calibration[C]. IET International Radar Conference 2009, Guilin, China, 2009: 60. doi: 10.1049/cp.2009.0114.
    [13] WANG Wenjing, WU Junjie, PEI Jifang, et al. Deception-jamming localization and suppression via configuration optimization for multistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5232016. doi: 10.1109/TGRS.2022.3189409.
    [14] FENG Qingqing, XU Huaping, WU Zhefeng, et al. Deceptive jamming detection for SAR based on cross-track interferometry[J]. Sensors, 2018, 18(7): 2265. doi: 10.3390/s18072265.
    [15] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2002, 88(3): 333–382. doi: 10.1109/5.838084.
    [16] TREES H and BELL K L. Detection estimation and modulation theory, 2nd edition, part I[J]. A Papoulis Probability Random Variables & Stochastic Processes, 2001, 8(10): 293–303. doi: 10.1002/0471221104.
    [17] SPAGNOLINI U. 2-D phase unwrapping and instantaneous frequency estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 579–589. doi: 10.1109/36.387574.
    [18] RIFE D and BOORSTYN R. Single tone parameter estimation from discrete-time observations[J]. IEEE Transactions on Information Theory, 1974, 20(5): 591–598. doi: 10.1109/TIT.1974.1055282.
    [19] ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446.
    [20] GUARNIERI A M and TEBALDINI S. ML-based fringe-frequency estimation for InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 136–140. doi: 10.1109/LGRS.2009.2028661.
    [21] KRIEGER G, FIEDLER H, ZINK M, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1–5.
    [22] XU Huaping, WU Zhefeng, LIU Wei, et al. Analysis of the effect of interference on InSAR[J]. IEEE Sensors Journal, 2015, 15(10): 5659–5668. doi: 10.1109/JSEN.2015.2445931.
    [23] 徐华平, 单乐. 一种重复轨道星载自然场景SAR复图像数据快速仿真方法[P]. 中国, 105677942A, 2016.

    XU Huaping and SHAN Le. Rapid simulation method of repeat-pass spaceborne natural scene SAR complex image data[P]. CN, 105677942A, 2016.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  112
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-09
  • 修回日期:  2024-09-11
  • 网络出版日期:  2024-10-17
  • 刊出日期:  2024-12-28

目录

    /

    返回文章
    返回