双基SAR空时自适应ANM-ADMM-Net杂波抑制技术

李中余 皮浩卓 李俊奥 杨青 武俊杰 杨建宇

李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24032
引用本文: 李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24032
LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptiveANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24032
Citation: LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptiveANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24032

双基SAR空时自适应ANM-ADMM-Net杂波抑制技术

DOI: 10.12000/JR24032
基金项目: 国家自然科学基金(62171084),衢州市财政资助科研项目(2022D014)
详细信息
    作者简介:

    李中余,博士,教授,主要研究方向为双/多基雷达舰船目标检测与成像技术、新体制雷达探测与成像技术等

    皮浩卓,硕士生,主要研究方向为双基SAR杂波抑制方向

    李俊奥,博士生,主要研究方向为合成孔径雷达与动目标成像

    杨 青,博士生,主要研究方向为双基合成孔径雷达舰船目标检测与成像技术

    武俊杰,博士,教授,主要研究方向为前视SAR成像技术、双/多基合成孔径雷达、雷达信号处理等

    杨建宇,博士,教授,主要研究方向为新体制雷达成像技术、雷达信号处理、合成孔径雷达成像等

    通讯作者:

    李中余 zhongyu_li@uestc.edu.cn

    皮浩卓 pihaozhuo_uestc@163.com

  • 责任主编:朱岱寅 Corresponding Editor: ZHU Daiyin
  • 中图分类号: TN951

Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR

Funds: The National Natural Science Foundation of China (62171084), The Municipal Government of Quzhou (2022D014)
More Information
  • 摘要: 双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。

     

  • 图  1  双基SAR几何构型

    Figure  1.  Geometry configuration of Bistatic SAR

    图  2  单/双基SAR杂波空时特性对比

    Figure  2.  Comparison of clutter characteristics in monostatic/bistatic SAR

    图  3  双基SAR空时谱

    Figure  3.  Bistatic SAR space-time clutter power spectrum

    图  4  离散空时域估计

    Figure  4.  Discrete space-time time domain estimation

    图  5  ANM-ADMM-Net数据流图

    Figure  5.  Data flow graph of ANM-ADMM-Net

    图  6  数据重构层

    Figure  6.  Data reconstruction layer

    图  7  非线性变换层

    Figure  7.  Nonlinear transform layer

    图  8  训练样本选取

    Figure  8.  Training sample selection

    图  9  计算复杂度分析

    Figure  9.  Computational complexity analysis

    图  10  不同算法空时谱估计结果

    Figure  10.  Monostatic/Bistatic SAR space-time clutter power spectrum

    图  11  不同算法SCNR损失

    Figure  11.  comparison of SCNR loss of different algorithms

    图  12  杂波抑制前数据结果

    Figure  12.  Data results before clutter suppression

    图  13  回波域杂波抑制结果

    Figure  13.  Clutter suppression results in echo domain

    图  14  图像域杂波抑制结果

    Figure  14.  Clutter suppression results in image domain

    图  15  不同方法杂波抑制对比

    Figure  15.  Results of suppression by different methods

    图  16  机载双基前视SAR飞行示意图

    Figure  16.  Airborne forward looking BiSAR flight diagram

    图  17  飞行实验处理结果

    Figure  17.  Airborne forward looking BiSAR flight diagram

    图  18  图像域杂波抑制结果

    Figure  18.  Clutter suppression results in image domain

    表  1  不同算法的计算复杂度

    Table  1.   Computational complexity of different algorithms

    算法 计算复杂度
    ANM-CVX-STAP $O({({L^2} + (2M - 1)(2N - 1) + MNL)^2}{(L + MN)^{2.5}})$
    FOUCSS-STAP $O(NM{N_{\text{s}}}{M_{\text{d}}} + {(NM)^3} + 2{(NM)^2}{N_{\text{s}}}{M_{\text{d}}} + NM{({N_{\text{s}}}{M_{\text{d}}})^2})$
    SBL-STAP $O(NM{N_{\text{s}}}{M_{\text{d}}} + {(NM)^3} + 3{(NM)^2}{N_{\text{s}}}{M_{\text{d}}} + 2NM{({N_{\text{s}}}{M_{\text{d}}})^2})$
    ANM-ADMM $O({(MN + L)^3} + {(MN)^2} + 6MN + {L^2} + L)$
    下载: 导出CSV

    表  2  算法运行时间对比(s)

    Table  2.   Run time of different algorithms (s)

    算法 平均运行时间
    ANM-CVX-STAP 32.7150
    FOUCSS-STAP 5.3151
    SBL-STAP 10.9429
    ANM-ADMM 1.9462
    下载: 导出CSV

    表  3  双基SAR仿真参数

    Table  3.   Simulation parameters of BiSAR

    参数 数值
    载频 10 GHz
    信号带宽 150 MHz
    脉冲重复频率 1000 Hz
    天线通道数 5
    相干脉冲数 10
    发射机初始位置 (–5000, –3000, 4000) m
    接收机初始位置 (0, –5000, 3000) m
    发射机速度矢量 (0, 150, 0) m/s
    接收机速度矢量 (0, 150, 0) m/s
    运动目标初始位置 (0, 0, 0) m
    运动目标速度矢量 (–4, 4, 0) m/s
    下载: 导出CSV
  • [1] ROBINSON P N. Synthetic array radar[J]. IEEE Potentials, 1997, 16(1): 8–11. doi: 10.1109/45.565604.
    [2] 杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.

    YANG Jianyu. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.
    [3] WILDEN H and BRENNER A R. The SAR/GMTI airborne radar PAMIR: Technology and performance[C]. IEEE MTT-S International Microwave Symposium, Anaheim, USA, 2010: 534–537. doi: 10.1109/MWSYM.2010.5518080.
    [4] LI Zhongyu, WU Junjie, HUANG Yulin, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277–3291. doi: 10.1109/TGRS.2016.2514494.
    [5] LI Junao, LI Zhongyu, YANG Qing, et al. Joint clutter suppression and moving target indication in 2-D azimuth rotated time domain for single-channel bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202516. doi: 10.1109/TGRS.2023.3237553.
    [6] LI Zhongyu, WU Junjie, YANG Jianyu, et al. Bistatic SAR Clutter Suppression[M]. Singapore: Springer, 2022: 8–19. doi: 10.1007/978-981-19-0159-1.
    [7] 李中余. 双基地合成孔径雷达动目标检测与成像技术研究[D]. [博士论文], 电子科技大学, 2017: 11–59.

    LI Zhongyu. Research on bistatic SAR moving target detection and imaging technology[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017: 11–59.
    [8] CHEN H C and MCGILLEM C D. Target motion compensation by spectrum shifting in synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 895–901. doi: 10.1109/7.256313.
    [9] FIENUP J R. Detecting moving targets in SAR imagery by focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794–809. doi: 10.1109/7.953237.
    [10] MOREIRA J R and KEYDEL W. A new MTI-SAR approach using the reflectivity displacement method[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1238–1244. doi: 10.1109/36.469488.
    [11] LIGHTSTONE L, FAUBERT D, and REMPEL G. Multiple phase centre DPCA for airborne radar[C]. IEEE National Radar Conference, Los Angeles, USA, 1991: 36–40. doi: 10.1109/NRC.1991.114720.
    [12] LI Zhongyu, LI Shanchuan, LIU Zhutian, et al. Bistatic forward-looking SAR MP-DPCA method for space–time extension clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6565–6579. doi: 10.1109/TGRS.2020.2977982.
    [13] 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586. doi: 10.12000/JR17073.

    XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space time adaptive processing technique for airborne radar: An overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586. doi: 10.12000/JR17073.
    [14] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893.
    [15] KLEMM R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 596–608. doi: 10.1109/7.845248.
    [16] LIU Zhutian, YU Huaiqin, LI Zhongyu, et al. Non-stationary clutter suppression approach based on cascading cancellation for bistatic forward-looking SAR[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–5. doi: 10.1109/RADAR.2019.8835707.
    [17] LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on Kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
    [18] 马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. doi: 10.3724/SP.J.1300.2014.14002.

    MA Zeqiang, WANG Xiqin, LIU Yimin, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. doi: 10.3724/SP.J.1300.2014.14002.
    [19] SUN Ke, ZHANG Hao, LI Gang, et al. A novel STAP algorithm using sparse recovery technique[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: V-336–V-339. doi: 10.1109/IGARSS.2009.5417664.
    [20] TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451.
    [21] YE Hongda, LI Zhongyu, LIU Zhutian, et al. Clutter-ridge matched SR-STAP technique for non-stationary clutter suppression[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–4. doi: 10.1109/RadarConf2043947.2020.9266628.
    [22] DUAN Keqing, LIU Weijian, DUAN Guangqing, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 557–564. doi: 10.1049/iet-rsn.2017.0425.
    [23] LI Zhihui, ZHANG Yongshun, GE Qichao, et al. Off-grid STAP algorithm based on reduced-dimension local search orthogonal matching pursuit[C]. 2019 IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 187–191. doi: 10.1109/SIPROCESS.2019.8868509.
    [24] 段克清, 王泽涛, 谢文冲, 等. 一种基于联合稀疏恢复的空时自适应处理方法[J]. 雷达学报, 2014, 3(2): 229–234. doi: 10.3724/SP.J.1300.2014.13149.

    DUAN Keqing, WANG Zetao, XIE Wenchong, et al. A space-time adaptive processing algorithm based on joint sparse recovery[J]. Journal of Radars, 2014, 3(2): 229–234. doi: 10.3724/SP.J.1300.2014.13149.
    [25] HE Pengyuan, HE Shun, YANG Zhiwei, et al. An off-grid STAP algorithm based on local mesh splitting with bistatic radar system[J]. IEEE Signal Processing Letters, 2020, 27: 1355–1359. doi: 10.1109/LSP.2020.3010161.
    [26] LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
    [27] FENG Weike, GUO Yiduo, ZHANG Yongshun, et al. Airborne radar space time adaptive processing based on atomic norm minimization[J]. Signal Processing, 2018, 148: 31–40. doi: 10.1016/j.sigpro.2018.02.008.
    [28] LI Zhongyue and WANG Tong. ADMM-based low-complexity off-grid space-time adaptive processing methods[J]. IEEE Access, 2020, 8: 206646–206658. doi: 10.1109/ACCESS.2020.3037652.
    [29] ZOU Bo, WANG Xin, FENG Weike, et al. DU-CG-STAP method based on sparse recovery and unsupervised learning for airborne radar clutter suppression[J]. Remote Sensing, 2022, 14(14): 3472. doi: 10.3390/rs14143472.
    [30] SU Hanning, BAO Qinglong, and CHEN Zengping. ADMM–net: A deep learning approach for parameter estimation of chirp signals under sub-nyquist sampling[J]. IEEE Access, 2020, 8: 75714–75727. doi: 10.1109/ACCESS.2020.2989507.
    [31] RICHARDS M A. The keystone transformation for correcting range migration in range-doppler processing[J]. Pulse, 2014, 1000(1).
    [32] LIU Zhutian, LI Zhongyu, YU Huaiqin, et al. Bistatic forward-looking SAR moving target detection method based on joint clutter cancellation in echo-image domain with three receiving channels[J]. Sensors, 2018, 18(11): 3835. doi: 10.3390/s18113835.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  335
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-05-23
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回