基于时频分析的SAR目标微波视觉特性智能感知方法与应用

黄钟泠 吴冲 姚西文 王立鹏 韩军伟

黄钟泠, 吴冲, 姚西文, 等. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用[J]. 雷达学报(中英文), 2024, 13(2): 331–344. doi: 10.12000/JR23191
引用本文: 黄钟泠, 吴冲, 姚西文, 等. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用[J]. 雷达学报(中英文), 2024, 13(2): 331–344. doi: 10.12000/JR23191
HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191
Citation: HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191

基于时频分析的SAR目标微波视觉特性智能感知方法与应用

DOI: 10.12000/JR23191
基金项目: 国家自然科学基金(62101459),中国博士后科学基金(BX2021248)
详细信息
    作者简介:

    黄钟泠,副教授,硕士生导师,研究方向为SAR图像解译、深度学习和可解释人工智能等

    吴 冲,硕士生,研究方向为SAR目标识别等

    姚西文,副研究员,博士生导师,研究方向为计算机视觉、遥感图像处理、细粒度图像分类和目标识别等

    王立鹏,工程师,研究方向为智能感知总体设计、SAR图像智能检测识别等

    韩军伟,教授,博士生导师,研究方向为计算机视觉与脑成像分析等

    通讯作者:

    黄钟泠 huangzhongling@nwpu.edu.cn

    姚西文 yaoxiwen@nwpu.edu.cn

  • 责任主编:徐丰 Corresponding Editor: XU Feng
  • 中图分类号: TN957.51

Physically Explainable Intelligent Perception and Application of SAR Target Characteristics Based on Time-frequency Analysis

Funds: The National Natural Science Foundation of China (62101459), China Postdoctoral Science Foundation (BX2021248)
More Information
  • 摘要: 合成孔径雷达(SAR)目标识别智能算法目前仍面临缺少鲁棒性、泛化性和可解释性的挑战,理解SAR目标微波特性并将其结合先进的深度学习算法,实现高效鲁棒的SAR目标识别,是目前领域较为关注的研究重点。SAR目标特性反演方法通常计算复杂度较高,难以结合深度神经网络实现端到端的实时预测。为促进SAR目标物理特性在智能识别任务中的应用,发展高效、智能、可解释的微波物理特性感知方法至关重要。该文将高分辨SAR目标的非平稳特性作为一种典型的微波视觉特性,提出一种改进的基于时频分析的目标特性智能感知方法,优化了处理流程和计算效率,使之更适用于SAR目标识别场景,并进一步将其应用到SAR目标智能识别算法中,实现了稳定的性能提升。该方法泛化性强、计算效率高,能得到物理可解释的SAR目标特性分类结果,对目标识别算法的性能提升与属性散射中心模型相当。

     

  • 图  1  微波视觉特性智能感知与应用流程

    Figure  1.  Intelligent perception and application flow of microwave visual characteristics

    图  3  分割算法处理T-72目标的示例

    Figure  3.  Example of a segmentation algorithm dealing with a T-72 target

    图  2  分割算法流程

    Figure  2.  Segmentation algorithm flow

    图  4  参数$ {N_{{\text{rg}}}} $, $ {N_{{\text{az}}}} $, $ {N_{\text{f}}} $, $ {N_{{\text{win}}}} $等示意图

    Figure  4.  Schematic diagram of parameters $ {N_{{\text{rg}}}} $, $ {N_{{\text{az}}}} $, $ {N_{\text{f}}} $ and $ {N_{{\text{win}}}} $

    图  5  基于PIHA的网络的结构

    Figure  5.  Structure of a PIHA-based network

    图  6  $ {N_{{\mathrm{rg}}}} $= 64时,不同$ {N_{\mathrm{f}}} $设置下的汉明窗滤波器组

    Figure  6.  Hamming window filter groups at different settings of ${N_{\mathrm{f}}} $ when $ {N_{{\mathrm{rg}}}} $ = 64

    图  7  不同参数设置下的目标二维子带散射特性

    Figure  7.  Scattering characteristics of the target in 2D sub-bands with different parameter settings

    图  8  索贝尔算子处理结果(红色标记代表人造目标,黄色标记代表背景杂波)

    Figure  8.  The processing results of the Sobel operator (the red mark represents the artificial target, and the yellow mark represents the background clutter)

    图  9  ASC模型散射中心仿真结果的子带散射特性分析

    Figure  9.  Analysis of the scattering characteristics of the sub-band scattering characteristics of ASC model scattering center simulation results

    图  10  对T-72目标不同部件的子带散射特性分析(x轴和y轴分别为方位向和距离向)

    Figure  10.  Analysis of the sub-band scattering characteristics of different components of the T-72 target (the x-axis andy-axis are azimuth and distance, respectively)

    图  11  距离4种聚类中心最近的二维子带散射图

    Figure  11.  Scattering of the two-dimensional sub-bands closest to the four clustering centers

    图  12  T-72目标每种微波视觉特性的分布图

    Figure  12.  Distribution map of each microwave visual characteristic of T-72 target

    图  13  BMP目标每种微波视觉特性的分布图

    Figure  13.  Distribution map of each microwave visual characteristic of BMP target

    表  1  MSTAR数据集OFA评价方法设置

    Table  1.   OFA evaluation method settings for MSTAR dataset

    类别 训练集/验证集 OFA-1 OFA-2 OFA-3
    型号 俯仰角 数量 型号 俯仰角 数量 型号 俯仰角 数量 型号 俯仰角 数量
    BMP-2 9563 17° 233 9563 15° 195 9563 15° 195 / / /
    / / / / / / 9566 15° 196 / / /
    / / / / / / C21 15° 196 / / /
    T-72 132 17° 232 132 15° 196 132 15° 196 / / /
    / / / / / / 812 15° 195 / / /
    / / / / / / S7 15° 191 / / /
    BTR-70 C71 17° 233 C71 15° 196 C71 15° 196 / / /
    BTR-60 k10yt7532 17° 256 k10yt7532 15° 195 k10yt7532 15° 195 / / /
    2S1 b01 17° 299 b01 15° 274 b01 15° 274 b01 15°/30°/45° 274/288/303
    BRDM-2 E-71 17° 298 E-71 15° 274 E-71 15° 274 E-71 15°/30°/45° 274/420/423
    D7 92v13015 17° 299 92v13015 15° 274 92v13015 15° 274 / / /
    T-62 A51 17° 299 A51 15° 273 A51 15° 273 / / /
    ZIL-131 E12 17° 299 E12 15° 274 E12 15° 274 / / /
    ZSU-234 d08 17° 299 d08 15° 274 d08 15° 274 d08 15°/30°/45° 274/406/422
    下载: 导出CSV

    表  2  不同聚类中心数量对比试验(%)

    Table  2.   Comparative experiments on the number of centers in different clusters (%)

    聚类数量 90 50
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    2 96.49±1.61 93.99$\pm $0.81 62.32±2.11 94.54±0.98 90.57$\pm $0.98 61.96$\pm $0.92
    4 97.40±0.38 94.38±0.74 64.55±1.54 94.79±1.30 91.27±1.95 61.30$\pm $1.30
    8 96.95$\pm $0.86 93.44±0.90 63.26$\pm $3.34 94.58$\pm $1.39 90.53±2.08 59.14±4.45
    聚类数量 30 10
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    2 88.48±0.91 84.90$\pm $1.20 60.95±2.39 69.58±1.02 64.31$\pm $1.65 54.78±2.61
    4 89.10$\pm $1.36 85.05±1.49 60.86$\pm $1.03 70.23$\pm $1.94 63.92±2.13 54.24$\pm $1.29
    8 89.13±1.20 84.56±1.68 56.42±2.66 70.85±1.82 64.85±1.46 53.41±2.43
    注:加粗和下划线分别表示最优和次优结果。
    下载: 导出CSV

    表  3  基于ASC和微波视觉特性的PIHA对比实验(%)

    Table  3.   Comparative experiments of PIHA based on ASC and microwave visual characteristics (%)

    模型 90 50
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    DenseNet-121 95.37±1.04 91.73±0.76 60.37±2.66 91.60±1.82 88.45±1.58 60.18±1.57
    +PIHA (ASC) 97.41±0.99 94.40±1.66 62.07±2.40 95.32±1.30 91.97±1.72 61.81±1.16
    +PIHA (TFA) 97.40±0.38 94.38±0.74 64.55±1.54 94.79±1.30 91.27±1.95 61.30±1.30
    A-ConvNet 86.95±5.69 84.51±6.06 57.16±3.07 92.48±5.00 88.88±4.82 62.80±2.31
    +PIHA (ASC) 94.96±2.84 93.02±3.24 57.91±1.80 93.13±3.24 89.06±3.54 59.11±2.89
    +PIHA (TFA) 88.78±4.12 86.46±4.24 61.37±3.69 92.81±4.43 89.45±3.87 60.15±1.16
    模型 30 10
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    DenseNet-121 84.72±1.13 80.29±1.21 57.44±2.56 65.58±3.49 59.32±3.21 56.63±3.18
    +PIHA (ASC) 90.20±1.43 85.98±1.73 61.91±1.45 71.97±1.97 65.89±2.08 53.87±1.85
    +PIHA (TFA) 89.10±1.36 85.05±1.49 60.86±1.03 70.23±1.94 63.92±2.13 54.24±1.29
    A-ConvNet 87.65±2.39 83.04±3.32 58.63±1.73 72.02±1.70 64.76±2.27 52.71±2.28
    +PIHA (ASC) 91.18±2.19 86.49±2.49 58.78±1.03 76.11±1.93 69.60±2.95 53.22±1.56
    +PIHA (TFA) 90.39±2.58 85.98±2.83 59.88±2.13 77.80±4.85 72.34±4.35 52.35±1.91
    注:加粗表示最优结果,括号内表示使用的物理信息。
    下载: 导出CSV

    表  4  本文方法与已有目标识别算法的对比(%)

    Table  4.   Comparative experiments between the proposed method and existing algorithms (%)

    方法 模型描述 输入 90 50
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    A-ConvNet 数据驱动 幅度 86.95±5.69 84.51±6.06 57.16±3.07 92.48±5.00 88.88±4.82 62.80±2.31
    FEC 数据+物理模型 复数 92.32±4.41 86.22±5.03 58.76±5.18 86.23±5.62 81.34±5.83 55.03±2.35
    MS-CVNets 数据驱动 复数 96.77$\pm $1.74 94.34$\pm $1.22 66.83±3.96 93.43$\pm $1.89 90.78$\pm $1.83 62.56$\pm $3.71
    本文方法 数据+物理模型 复数 97.40±0.38 94.38±0.74 64.55$\pm $0.15 94.79±1.30 91.27±1.95 61.30±1.30
    方法 模型描述 30 10
    OFA-1 OFA-2 OFA-3 OFA-1 OFA-2 OFA-3
    A-ConvNet 数据驱动 幅度 87.65$\pm $2.39 83.04$\pm $3.32 58.63$\pm $1.73 72.02±1.70 64.76±2.27 52.71$\pm $2.28
    FEC 数据+物理模型 复数 68.43±7.72 64.48±6.16 51.12±1.81 57.84±3.47 54.04±3.91 43.44±5.97
    MS-CVNets 数据驱动 复数 81.33±0.95 77.50±0.97 56.02±1.11 49.11±4.27 44.63±3.74 38.96±5.78
    本文方法 数据+物理模型 复数 89.10±1.36 85.05±1.49 60.86±1.03 70.23$\pm $1.94 63.92$\pm $2.13 54.24±1.29
    注:加粗和下划线分别表示最优和次优结果。
    下载: 导出CSV
  • [1] CHEN Keyang, PAN Zongxu, HUANG Zhongling, et al. Learning from reliable unlabeled samples for semi-supervised SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4512205. doi: 10.1109/LGRS.2022.3197892.
    [2] CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [3] ZENG Zhiqiang, SUN Jinping, HAN Zhu, et al. SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228618. doi: 10.1109/TGRS.2022.3177323.
    [4] 金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
    [5] DATCU M, HUANG Zhongling, ANGHEL A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 8–25. doi: 10.1109/MGRS.2023.3237465.
    [6] 黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
    [7] 文贡坚, 马聪慧, 丁柏圆, 等. 基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法[J]. 雷达学报, 2020, 9(4): 608–621. doi: 10.12000/JR20099.

    WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099.
    [8] 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.

    GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
    [9] KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318–2331. doi: 10.1109/TKDE.2017.2720168.
    [10] VON RUEDEN L, MAYER S, BECKH K, et al. Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 614–633. doi: 10.1109/TKDE.2021.3079836.
    [11] CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720.
    [12] LI Yi, DU Lan, and WEI Di. Multiscale CNN based on component analysis for SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211212. doi: 10.1109/TGRS.2021.3100137.
    [13] INKAWHICH N, DAVIS E, MAJUMDER U, et al. Advanced techniques for robust SAR ATR: Mitigating noise and phase errors[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 844–849. doi: 10.1109/RADAR42522.2020.9114784.
    [14] PENG Bowen, PENG Bo, ZHOU Jie, et al. Scattering model guided adversarial examples for SAR target recognition: Attack and defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5236217. doi: 10.1109/TGRS.2022.3213305.
    [15] FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
    [16] LIU Zhunga, WANG Longfei, WEN Zaidao, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5227914. doi: 10.1109/TGRS.2022.3174703.
    [17] 邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.

    XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
    [18] BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust Pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112.
    [19] XUE Ruihang, BAI Xueru, and ZHOU Feng. SAISAR-Net: A robust sequential adjustment ISAR image classification network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214715. doi: 10.1109/TGRS.2021.3113655.
    [20] 高悦欣, 李震宇, 盛佳恋, 等. 一种大转角SAR图像散射中心各向异性提取方法[J]. 电子与信息学报, 2016, 38(8): 1956–1961. doi: 10.11999/JEIT151261.

    GAO Yuexin, LI Zhenyu, SHENG Jialian, et al. Extraction method for anisotropy characteristic of scattering center in wide-angle SAR imagery[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1956–1961. doi: 10.11999/ JEIT151261.
    [21] KHAN S and GUIDA R. Feasibility of time-frequency urban area analysis on TerraSAR-X fully polarimetric dataset[C]. 2011 Joint Urban Remote Sensing Event, Munich, Germany, 2011: 265–268. doi: 10.1109/JURSE.2011.5764770.
    [22] ZHANG Lu, HUANG Yue, FERRO-FAMIL L, et al. Effect of polarimetric information on time-frequency analysis using spaceborne SAR image[C]. 13th European Conference on Synthetic Aperture Radar, 2021.
    [23] FERRO-FAMIL L and POTTIER E. Urban area remote sensing from L-band PolSAR data using time-frequency techniques[C]. 2007 Urban Remote Sensing Joint Event, Paris, France, 2007: 1–6. doi: 10.1109/URS.2007.371769.
    [24] DUQUENOY M, OVARLEZ J P, FERRO-FAMIL L, et al. Study of dispersive and anisotropic scatterers behavior in radar imaging using time-frequency analysis and polarimetric coherent decomposition[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 180–185. doi: 10.1109/RADAR.2006.1631794.
    [25] FERRO-FAMIL L, REIGBER A, POTTIER E, et al. Scene characterization using subaperture polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2264–2276. doi: 10.1109/TGRS.2003.817188.
    [26] FERRO-FAMIL L, REIGBER A, and POTTIER E. Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach[J]. Canadian Journal of Remote Sensing, 2005, 31(1): 21–29. doi: 10.5589/m04-062.
    [27] HUANG Zhongling, DATCU M, PAN Zongxu, et al. HDEC-TFA: An unsupervised learning approach for discovering physical scattering properties of single-polarized SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3054–3071. doi: 10.1109/TGRS.2020.3014335.
    [28] SPIGAI M, TISON C, and SOUYRIS J C. Time-frequency analysis in high-resolution SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2699–2711. doi: 10.1109/TGRS.2011.2107914.
    [29] HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physics inspired hybrid attention for SAR target recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 164–174. doi: 10.1016/j.isprsjprs.2023.12.004.
    [30] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [31] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
    [32] ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  444
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 修回日期:  2023-11-28
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回