智能电磁计算的若干进展

刘彻 杨恺乔 鲍江涵 俞文明 游检卫 李廉林 崔铁军

刘彻, 杨恺乔, 鲍江涵, 等. 智能电磁计算的若干进展[J]. 雷达学报, 2023, 12(4): 657–683. doi: 10.12000/JR23133
引用本文: 刘彻, 杨恺乔, 鲍江涵, 等. 智能电磁计算的若干进展[J]. 雷达学报, 2023, 12(4): 657–683. doi: 10.12000/JR23133
LIU Che, YANG Kaiqiao, BAO Jianghan, et al. Recent progress in intelligent electromagnetic computing[J]. Journal of Radars, 2023, 12(4): 657–683. doi: 10.12000/JR23133
Citation: LIU Che, YANG Kaiqiao, BAO Jianghan, et al. Recent progress in intelligent electromagnetic computing[J]. Journal of Radars, 2023, 12(4): 657–683. doi: 10.12000/JR23133

智能电磁计算的若干进展

DOI: 10.12000/JR23133
基金项目: 博士后创新人才支持计划(BX20220065),中央高校基本科研业务费专项资金(2242023K5002)
详细信息
    作者简介:

    刘 彻,博士,助理研究员,主要研究方向为计算电磁学、电磁超材料与人工智能的交叉技术

    杨恺乔,博士生,主要研究方向为电磁计算的智能和并行方法

    鲍江涵,博士生,主要研究方向为机器学习在电磁计算领域的运用以及超表面的智能化设计

    俞文明,副研究员,主要研究方向为计算电磁学算法和电磁仿真软件的国产化推进

    游检卫,教授,博士生导师,主要研究方向为计算电磁学和电磁超构材料

    李廉林,教授,博士生导师,主要研究方向为电磁感知体制、算法和工程应用

    崔铁军,中国科学院院士,主要研究方向为电磁超材料和计算电磁学

    通讯作者:

    崔铁军 tjcui@seu.edu.cn

  • 责任主编:徐丰 Corresponding Editor: XU Feng
  • 中图分类号: TN82

Recent Progress in Intelligent Electromagnetic Computing

Funds: China National Postdoctoral Program for Innovative Talents (BX20220065), The Fundamental Research Funds for the Central Universities (2242023K5002)
More Information
  • 摘要: 自19世纪建立麦克斯韦方程以来,计算电磁学经历了百年的稳定发展,现已发展出有限差分法、有限元法、矩量法等数值算法和高频近似方法,是现代电子与信息领域的重要基石。近年来,人工智能技术经历了蓬勃发展,因其强大的建模和推理能力在电磁学界崭露头角,催生出智能电磁计算这一新兴研究方向,吸引了国内外众多科研工作者致力于该领域的研究,在电磁建模与仿真、电磁新材料和器件的分析与综合、探测与感知等领域涌现出很多优秀成果,为发展百余年的电磁学注入了新鲜血液。该文讨论了智能电磁计算的若干进展,为读者入门并了解该领域最新的研究成果提供有益帮助。

     

  • 图  1  数据驱动的正向电磁计算分类

    Figure  1.  The classification of data-driven forward electromagnetic computing

    图  2  部分数据驱动正向电磁计算研究成果

    Figure  2.  Several research results of data-driven forward electromagnetic computing

    图  3  部分物理驱动以及算子学习正向计算研究成果

    Figure  3.  Several research results of PINN based and operator-learning based forward computing

    图  4  部分可微分正向电磁计算研究成果示意

    Figure  4.  Several research results of differentiable forward electromagnetic computing

    图  5  基于U-Net结构的逆向智能电磁成像

    Figure  5.  Reverse intelligent electromagnetic imaging based on U-Net

    图  6  基于Pix2Pix结构的逆向智能电磁成像

    Figure  6.  Reverse intelligent electromagnetic imaging based on Pix2Pix

    图  7  借鉴迭代优化算法的端到端逆向智能电磁成像

    Figure  7.  End-to-end reverse intelligent electromagnetic imaging inspired by iterative optimization methods

    图  8  迭代形式的逆向智能电磁成像

    Figure  8.  Iterative intelligent electromagnetic imaging

    图  9  基于点云的无网格三维逆向智能电磁成像模型[86]

    Figure  9.  A mesh-free 3-D deep learning electromagnetic inversion method based on point clouds[86]

    10  基于信息超材料的智能方向图设计

    10.  Intelligent design of radiation patterns based on information metamaterial

    图  11  基于信息超材料的非监督智能设计

    Figure  11.  Unsupervised intelligent design based on information metamaterial

    图  12  用于复杂系统的信息超材料的智能化设计

    Figure  12.  Intelligent design of information metamaterial for complex systems

    图  13  可编程人工智能机的工作原理示意图[107]

    Figure  13.  The Working Principle of Programmable Artificial Intelligence Machine (PIAM)[107]

    图  14  可编程表面等离激元神经网络[109]

    Figure  14.  Programmable Surface Plasmonic Neural Networks (SPNN)[109]

    图  15  基于信息超表面的智能室内机器人(I2MR)系统[111]

    Figure  15.  Intelligent indoor metasurface robotics (I2MR)[111]

    图  16  基于计算机视觉的智能超表面跟踪与通信系统的工作原理[113]

    Figure  16.  The working principle of intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[113]

    表  1  4种智能电磁计算方法特性对比

    Table  1.   Comparison of characteristics of four intelligent electromagnetic calculation methods

    类别应用成熟度计算复杂度泛化能力训练数据量
    数据驱动(结果学习)
    数据驱动(过程学习)较高适中较好适中
    物理驱动中等较低适中
    算子学习较好较多
    可微分计算中等
    下载: 导出CSV
  • [1] “电磁计算”专刊编委会. 电磁计算方法研究进展综述[J]. 电波科学学报, 2020, 35(1): 13–25. doi: 10.13443/j.cjors.2019110301

    The Editorial Board of Special Issue for “Computational Electromagnetics”. Progress in computational electromagnetic methods[J]. Chinese Journal of Radio Science, 2020, 35(1): 13–25. doi: 10.13443/j.cjors.2019110301
    [2] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270
    [3] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2
    [4] BI Kaifeng, XIE Lingxi, ZHANG Hengheng, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533–538. doi: 10.1038/s41586-023-06185-3
    [5] ZHANG Yuchen, LONG Mingsheng, CHEN Kaiyuan, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970): 526–532. doi: 10.1038/S41586-023-06184-4
    [6] FAWZI A, BALOG M, HUANG A, et al. Discovering faster matrix multiplication algorithms with reinforcement learning[J]. Nature, 2022, 610(7930): 47–53. doi: 10.1038/s41586-022-05172-4
    [7] ZHU Shiqiang, YU Ting, XU Tao, et al. Intelligent computing: The latest advances, challenges, and future[J]. Intelligent Computing, 2023, 2: 0006. doi: 10.34133/icomputing.0006
    [8] HORNIK K, STINCHCOMBE M, and WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359–366. doi: 10.1016/0893-6080(89)90020-8
    [9] MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi: 10.3788/PI.2022.R01
    [10] CHEVALIER M W, LUEBBERS R J, and CABLE V P. FDTD local grid with material traverse[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 411–421. doi: 10.1109/8.558656
    [11] JIN Jianming. The Finite Element Method in Electromagnetics[M]. 3rd ed. Hoboken: John Wiley & Sons, 2014.
    [12] HARRINGTON R F. The method of moments in electromagnetics[J]. Journal of Electromagnetic Waves and Applications, 1987, 1(3): 181–200. doi: 10.1163/156939387X00018
    [13] LING H, CHOU R C, and LEE S W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(2): 194–205. doi: 10.1109/8.18706
    [14] SCHÜTT K T, GASTEGGER M, TKATCHENKO A, et al. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions[J]. Nature Communications, 2019, 10(1): 5024. doi: 10.1038/s41467-019-12875-2
    [15] NOÉ F, OLSSON S, KÖHLER J, et al. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning[J]. Science, 2019, 365(6457): eaaw1147. doi: 10.1126/science.aaw1147
    [16] MOMENI A and FLEURY R. Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement[J]. Nature Communications, 2022, 13(1): 2651. doi: 10.1038/s41467-022-30297-5
    [17] GIANNAKIS I, GIANNOPOULOS A, and WARREN C. A machine learning-based fast-forward solver for ground penetrating radar with application to full-waveform inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4417–4426. doi: 10.1109/TGRS.2019.2891206
    [18] YAO Heming and JIANG Lijun. Machine learning based neural network solving methods for the FDTD method[C]. 2018 IEEE International Symposium on Antennas and Propagation, Boston, USA, 2018: 2321–2322.
    [19] QI Shutong, WANG Yinpeng, LI Yongzhong, et al. Two-dimensional electromagnetic solver based on deep learning technique[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, 5: 83–88. doi: 10.1109/JMMCT.2020.2995811
    [20] SHAN Tao, TANG Wei, DANG Xunwang, et al. Study on a fast solver for Poisson’s equation based on deep learning technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6725–6733. doi: 10.1109/TAP.2020.2985172
    [21] NOAKOASTEEN O, WANG Shu, PENG Zhen, et al. Physics-informed deep neural networks for transient electromagnetic analysis[J]. IEEE Open Journal of Antennas and Propagation, 2020, 1: 404–412. doi: 10.1109/OJAP.2020.3013830
    [22] MA Zhenchao, XU Kuiwen, SONG Rencheng, et al. Learning-based fast electromagnetic scattering solver through generative adversarial network[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2194–2208. doi: 10.1109/TAP.2020.3026447
    [23] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [24] ZHANG Wenwei, KONG Dehua, HE Xiaoyang, et al. A machine learning method for 2-D scattered far-field prediction based on wave coefficients[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1174–1178. doi: 10.1109/LAWP.2023.3235928
    [25] KONG Dehua, ZHANG Wenwei, HE Xiaoyang, et al. Intelligent prediction for scattering properties based on multihead attention and target inherent feature parameter[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5504–5509. doi: 10.1109/TAP.2023.3262341
    [26] YIN Tiantian, WANG Chaofu, XU Kuiwen, et al. Electric flux density learning method for solving 3-D electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5144–5155. doi: 10.1109/TAP.2022.3145486
    [27] YAO Heming and JIANG Lijun. Machine-learning-based PML for the FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 192–196. doi: 10.1109/LAWP.2018.2885570
    [28] YAO Heming and JIANG Lijun. Enhanced PML based on the long short term memory network for the FDTD method[J]. IEEE Access, 2020, 8: 21028–21035. doi: 10.1109/ACCESS.2020.2969569
    [29] HUGHES T W, WILLIAMSON I A D, MINKOV M, et al. Wave physics as an analog recurrent neural network[J]. Science Advances, 2019, 5(12): eaay6946. doi: 10.1126/sciadv.aay6946
    [30] FENG Naixing, CHEN Yingshi, ZHANG Yuxian, et al. An expedient DDF-based implementation of perfectly matched monolayer[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 541–544. doi: 10.1109/LMWC.2021.3062645
    [31] SUN Jiajing, SUN Sheng, CHEN Y P, et al. Machine-learning-based hybrid method for the multilevel fast multipole algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2177–2181. doi: 10.1109/LAWP.2020.3026822
    [32] HAO Wenqu, CHEN Y P, CHEN Peiyao, et al. Solving two-dimensional scattering from multiple dielectric cylinders by artificial neural network accelerated numerical green’s function[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(5): 783–787. doi: 10.1109/LAWP.2021.3063133
    [33] GUO Rui, LIN Zhichao, SHAN Tao, et al. Solving combined field integral equation with deep neural network for 2-D conducting object[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 538–542. doi: 10.1109/LAWP.2021.3056460
    [34] GUO Rui, SHAN Tao, SONG Xiaoqian, et al. Physics embedded deep neural network for solving volume integral equation: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6135–6147. doi: 10.1109/TAP.2021.3070152
    [35] XUE Bowen, GUO Rui, LI Maokun, et al. Deep-learning-equipped iterative solution of electromagnetic scattering from dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5954–5966. doi: 10.1109/TAP.2023.3264701
    [36] RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686–707. doi: 10.1016/j.jcp.2018.10.045
    [37] LIM J and PSALTIS D. MaxwellNet: Physics-driven deep neural network training based on Maxwell's equations[J]. APL Photonics, 2022, 7(1): 011301. doi: 10.1063/5.0071616
    [38] GIGLI C, SABA A, AYOUB A B, et al. Predicting nonlinear optical scattering with physics-driven neural networks[J]. APL Photonics, 2023, 8(2): 026105. doi: 10.1063/5.0119186
    [39] FUJITA K. Electromagnetic field computation of multilayer vacuum chambers with physics-informed neural networks[J]. Frontiers in Physics, 2022, 10: 967645. doi: 10.3389/fphy.2022.967645
    [40] CHEN Mingkun, LUPOIU R, MAO Chenkai, et al. WaveY-Net: Physics-augmented deep-learning for high-speed electromagnetic simulation and optimization[C]. SPIE 12011, High Contrast Metastructures XI, San Francisco, USA, 2022: 120110C.
    [41] LU Lu, JIN Pengzhan, PANG Guofei, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218–229. doi: 10.1038/s42256-021-00302-5
    [42] LU Lu, MENG Xuhui, MAO Zhiping, et al. DeepXDE: A deep learning library for solving differential equations[J]. Siam Review, 2021, 63(1): 208–228. doi: 10.1137/19M1274067
    [43] GUPTA G, XIAO Xiongye, and BOGDAN P. Multiwavelet-based operator learning for differential equations[C]. 35th Conference on Neural Information Processing Systems, 2021, 34: 24048–24062.
    [44] LI Zongyi, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[C]. 9th International Conference on Learning Representations, Austria, 2021.
    [45] AUGENSTEIN Y, REPÄN T, and ROCKSTUHL C. Neural operator-based surrogate solver for free-form electromagnetic inverse design[J]. ACS Photonics, 2023, 10(5): 1547–1557. doi: 10.1021/acsphotonics.3c00156
    [46] PENG Zhong, YANG Bo, XU Yixian, et al. Rapid surrogate modeling of electromagnetic data in frequency domain using neural operator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2007912. doi: 10.1109/TGRS.2022.3222507
    [47] PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators[J]. arXiv: 2202.11214, 2022.
    [48] GUIBAS J, MARDANI M, LI Zongyi, et al. Adaptive Fourier neural operators: Efficient token mixers for transformers[C]. 10th International Conference on Learning Representations (ICLR), Virtual, Online, 2022.
    [49] 许威威, 周漾, 吴鸿智, 等. 可微绘制技术研究进展[J]. 中国图象图形学报, 2021, 26(6): 1521–1535. doi: 10.11834/jig.200853

    XU Weiwei, ZHOU Yang, WU Hongzhi, et al. Differential rendering: A survey[J]. Journal of Image and Graphics, 2021, 26(6): 1521–1535. doi: 10.11834/jig.200853
    [50] GUO Liangshuai, LI Maokun, XU Shenheng, et al. Electromagnetic modeling using an FDTD-equivalent recurrent convolution neural network: Accurate computing on a deep learning framework[J]. IEEE Antennas and Propagation Magazine, 2023, 65(1): 93–102. doi: 10.1109/MAP.2021.3127514
    [51] HU Yanyan, JIN Yuchen, WU Xuqing, et al. A theory-guided deep neural network for time domain electromagnetic simulation and inversion using a differentiable programming platform[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 767–772. doi: 10.1109/TAP.2021.3098585
    [52] FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069
    [53] LOPER M M and BLACK M J. OpenDR: An approximate differentiable renderer[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 154–169.
    [54] CHEN Wenzheng, GAO Jun, LING Huan, et al. Learning to predict 3D objects with an interpolation-based differentiable renderer[C]. 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 862.
    [55] MARKLEIN R, MAYER K, HANNEMANN R, et al. Linear and nonlinear inversion algorithms applied in nondestructive evaluation[J]. Inverse Problems, 2002, 18(6): 1733–1759. doi: 10.1088/0266-5611/18/6/319
    [56] ZOUGHI R and KHARKOVSKY S. Microwave and millimetre wave sensors for crack detection[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(8): 695–713. doi: 10.1111/j.1460-2695.2008.01255.x
    [57] NEAL A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress[J]. Earth-Science Reviews, 2004, 66(3/4): 261–330. doi: 10.1016/j.earscirev.2004.01.004
    [58] ABUBAKAR A, HABASHY T M, DRUSKIN V L, et al. 2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements[J]. Geophysics, 2008, 73(4): F165–F177. doi: 10.1190/1.2937466
    [59] BOND E J, LI Xu, HAGNESS S C, et al. Microwave imaging via space-time beamforming for early detection of breast cancer[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1690–1705. doi: 10.1109/TAP.2003.815446
    [60] NIKOLOVA N K. Microwave imaging for breast cancer[J]. IEEE Microwave Magazine, 2011, 12(7): 78–94. doi: 10.1109/MMM.2011.942702
    [61] SHEEN D M, MCMAKIN D L, and HALL T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581–1592. doi: 10.1109/22.942570
    [62] ZHUGE Xiaodong and YAROVOY A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. doi: 10.1109/TGRS.2010.2053038
    [63] VAN DEN BERG P M and KLEINMAN R E. A contrast source inversion method[J]. Inverse Problems, 1997, 13(6): 1607–1620. doi: 10.1088/0266-5611/13/6/013
    [64] VAN DEN BERG P M, ABUBAKAR A, and FOKKEMA J T. Multiplicative regularization for contrast profile inversion[J]. Radio Science, 2003, 38(2): 8022. doi: 10.1029/2001RS002555
    [65] CHEW W C and WANG Yiming. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method[J]. IEEE Transactions on Medical Imaging, 1990, 9(2): 218–225. doi: 10.1109/42.56334
    [66] LI Lianlin, WANG Longgang, DING Jun, et al. A probabilistic model for the nonlinear electromagnetic inverse scattering: TM case[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5984–5991. doi: 10.1109/TAP.2017.2751654
    [67] PASTORINO M. Stochastic optimization methods applied to microwave imaging: A review[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 538–548. doi: 10.1109/TAP.2007.891568
    [68] SALUCCI M, ARREBOLA M, SHAN Tao, et al. Artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6349–6364. doi: 10.1109/TAP.2022.3177556
    [69] SUN Yu, XIA Zhihao, and KAMILOV U S. Efficient and accurate inversion of multiple scattering with deep learning[J]. Optics Express, 2018, 26(11): 14678–14688. doi: 10.1364/OE.26.014678
    [70] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [71] WEI Zhun and CHEN Xudong. Deep-learning schemes for full-wave nonlinear inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1849–1860. doi: 10.1109/TGRS.2018.2869221
    [72] XU Kuiwen, WU Liang, YE Xiuzhu, et al. Deep learning-based inversion methods for solving inverse scattering problems with phaseless data[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7457–7470. doi: 10.1109/TAP.2020.2998171
    [73] ZHANG Huanhuan, YAO Heming, JIANG Lijun, et al. Enhanced two-step deep-learning approach for electromagnetic-inverse-scattering problems: Frequency extrapolation and scatterer reconstruction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1662–1672. doi: 10.1109/TAP.2022.3225532
    [74] ZHOU Yulong, ZHONG Yu, WEI Zhun, et al. An improved deep learning scheme for solving 2-D and 3-D inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2853–2863. doi: 10.1109/TAP.2020.3027898
    [75] ZHONG Yu, LAMBERT M, LESSELIER D, et al. A new integral equation method to solve highly nonlinear inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1788–1799. doi: 10.1109/TAP.2016.2535492
    [76] GUO Liang, SONG Guanfeng, and WU Hongsheng. Complex-valued pix2pix-deep neural network for nonlinear electromagnetic inverse scattering[J]. Electronics, 2021, 10(6): 752. doi: 10.3390/electronics10060752
    [77] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5967–5976.
    [78] SONG Rencheng, HUANG Youyou, YE Xiuzhu, et al. Learning-based inversion method for solving electromagnetic inverse scattering with mixed boundary conditions[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6218–6228. doi: 10.1109/TAP.2021.3139645
    [79] LI Lianlin, WANG Longgang, TEIXEIRA F L, et al. DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1819–1825. doi: 10.1109/TAP.2018.2885437
    [80] WEI Zhun and CHEN Xudong. Physics-inspired convolutional neural network for solving full-wave inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 6138–6148. doi: 10.1109/TAP.2019.2922779
    [81] GUO Rui, JIA Zekui, SONG Xiaoqian, et al. Pixel- and model-based microwave inversion with supervised descent method for dielectric targets[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8114–8126. doi: 10.1109/TAP.2020.2999741
    [82] GUO Rui, LIN Zhichao, SHAN Tao, et al. Physics embedded deep neural network for solving full-wave inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6148–6159. doi: 10.1109/TAP.2021.3102135
    [83] LIU Che, ZHANG Hongrui, LI Lianlin, et al. Towards intelligent electromagnetic inverse scattering using deep learning techniques and information metasurfaces[J]. IEEE Journal of Microwaves, 2023, 3(1): 509–522. doi: 10.1109/JMW.2022.3225999
    [84] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
    [85] ZHANG Hongrui, CHEN Yanjin, CUI Tiejun, et al. Probabilistic deep learning solutions to electromagnetic inverse scattering problems using conditional renormalization group flow[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4955–4965. doi: 10.1109/TMTT.2022.3205890
    [86] CHEN Yanjin, ZHANG Hongrui, CUI Tiejun, et al. A mesh-free 3-D deep learning electromagnetic inversion method based on point clouds[J]. IEEE Transactions on Microwave Theory and Techniques, 2023.
    [87] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509–514. doi: 10.1070/PU1968v010n04ABEH003699
    [88] PARAZZOLI C G, GREEGOR R B, LI K, et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 2003, 90(10): 107401. doi: 10.1103/PhysRevLett.90.107401
    [89] DRACHEV V P, CAI W, CHETTIAR U, et al. Experimental verification of an optical negative-index material[J]. Laser Physics Letters, 2006, 3(1): 49–55. doi: 10.1002/lapl.200510062
    [90] LIU Ruopeng, CHENG Qiang, HAND T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903. doi: 10.1103/PhysRevLett.100.023903
    [91] KUNDTZ N and SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129–132. doi: 10.1038/nmat2610
    [92] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [93] CUI Tiejun, LI Lianlin, LIU Shuo, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
    [94] CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B
    [95] LI Lianlin and CUI Tiejun. Information metamaterials - from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
    [96] CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172. doi: 10.1038/lsa.2016.172
    [97] 刘彻, 马骞, 李廉林, 等. 人工智能超材料[J]. 光学学报, 2021, 41(8): 0823004. doi: 10.3788/AOS202141.0823004

    LIU Che, MA Qian, LI Lianlin, et al. Artificial intelligence metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004. doi: 10.3788/AOS202141.0823004
    [98] SHAN Tao, PAN Xiaotian, LI Maokun, et al. Coding programmable metasurfaces based on deep learning techniques[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 114–125. doi: 10.1109/JETCAS.2020.2972764
    [99] LI Shangyang, LIU Zhuoyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891
    [100] LIU Che, YU Wenming, MA Qian, et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network[J]. Photonics Research, 2021, 9(4): B159–B167. doi: 10.1364/PRJ.416287
    [101] CHEN Xiaoqing, ZHANG Lei, and CUI Tiejun. Intelligent autoencoder for space-time-coding digital metasurfaces[J]. Applied Physics Letters, 2023, 122(16): 161702. doi: 10.1063/5.0132635
    [102] QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2
    [103] JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi: 10.1038/s41377-023-01131-4
    [104] REN Haoran, LI Xiangping, ZHANG Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805–809. doi: 10.1126/science.aaf1112
    [105] LIN Xing, RIVENSON Y, YARDIMCI N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004–1008. doi: 10.1126/science.aat8084
    [106] KHORAM E, CHEN Ang, LIU Dianjing, et al. Nanophotonic media for artificial neural inference[J]. Photonics Research, 2019, 7(8): 823–827. doi: 10.1364/PRJ.7.000823
    [107] LIU Che, MA Qian, LUO Zhangjie, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113–122. doi: 10.1038/s41928-022-00719-9
    [108] PENDRY J B, MARTÍN-MORENO L, and GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847–848. doi: 10.1126/science.1098999
    [109] GAO Xinxin, MA Qian, GU Ze, et al. Programmable surface plasmonic neural networks for microwave detection and processing[J]. Nature Electronics, 2023, 6(4): 319–328. doi: 10.1038/s41928-023-00951-x
    [110] 李廉林, 崔铁军. 智能电磁感知的若干进展[J]. 雷达学报, 2021, 10(2): 183–190. doi: 10.12000/JR21049

    LI Lianlin and CUI Tiejun. Recent progress in intelligent electromagnetic sensing[J]. Journal of Radars, 2021, 10(2): 183–190. doi: 10.12000/JR21049
    [111] ZHAO Hanting, HU Shengguo, ZHANG Hongrui, et al. Intelligent indoor metasurface robotics[J]. National Science Review, 2023, 10(8): nwac266. doi: 10.1093/NSR/NWAC266
    [112] WANG Zhuo, ZHANG Hongrui, ZHAO Hanting, et al. Multi-task and multi-scale intelligent electromagnetic sensing with distributed multi-frequency reprogrammable metasurfaces[J]. Advanced Optical Materials, 2023: 2203153.
    [113] LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi: 10.1038/s41467-023-36645-3
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  2796
  • HTML全文浏览量:  1808
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-08-07
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回