SAR图像飞机目标智能检测识别技术研究进展与展望

罗汝 赵凌君 何奇山 计科峰 匡纲要

罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报(中英文), 2024, 13(2): 307–330. doi: 10.12000/JR23056
引用本文: 罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报(中英文), 2024, 13(2): 307–330. doi: 10.12000/JR23056
LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056
Citation: LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056

SAR图像飞机目标智能检测识别技术研究进展与展望

DOI: 10.12000/JR23056
基金项目: 国家自然科学基金(62001480),湖南省自然科学基金(2021JJ40684),卫星信息智能处理与应用技术重点实验室自主研究基金(2022-ZZKY-JJ-10-02)
详细信息
    作者简介:

    罗 汝,博士生,研究方向为SAR图像解译、可解释人工智能、深度学习、目标检测与识别技术

    赵凌君,副教授,研究方向为遥感信息处理、合成孔径雷达目标自动识别等

    何奇山,博士生,研究方向为SAR目标检测识别、深度学习

    计科峰,博士,教授,博士生导师。研究方向为合成孔径雷达(SAR)目标电磁散射特性建模、特征提取、检测识别以及多源空天遥感图像智能处理与解译基础理论、核心关键技术以及系统集成与应用等

    匡纲要,博士,教授,博士生导师,研究方向为遥感图像智能解译、SAR图像目标检测与识别

    通讯作者:

    赵凌君 nudtzlj@163.com

  • 责任主编:孙显 Corresponding Editor: SUN Xian
  • 中图分类号: TN957.51

Intelligent Technology for Aircraft Detection and Recognition through SAR Imagery: Advancements and Prospects

Funds: The National Natural Science Foundation of China (62001480), Hunan Provincial Natural Science Foundation of China (2021JJ40684), Research Funding of Satellite Information Intelligent Processing and Application Research Laboratory (2022-ZZKY-JJ-10-02)
More Information
  • 摘要: 合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。

     

  • 图  1  典型SAR ATR系统示意图

    Figure  1.  Schematic diagram of the typical SAR ATR system

    图  2  添加形状先验前后飞机目标重建结果比对[17]

    Figure  2.  Comparison of aircraft target reconstruction results with/without shape prior[17]

    图  3  基于伽马分布的CFAR飞机目标检测结果[19]

    Figure  3.  An application example of aircraft detection with Gamma-based CFAR algorithm[19]

    图  4  基于梯度纹理显著性的SAR图像飞机目标检测结果[20]

    Figure  4.  Example of aircraft detection based on gradient textural saliency map in SAR imagery[20]

    图  5  飞机目标部件结构

    Figure  5.  Component structure of aircraft

    图  6  基于GMM的飞机目标散射结构特征建模结果[24]

    Figure  6.  Modeling results of scattering structure feature of aircraft based on GMM[24]

    图  7  SAR图像飞机、车辆、船只目标示例

    Figure  7.  Examples of typical targets in SAR imagery, including aircraft, vehicle, and ship

    图  8  SAR图像飞机目标示例

    Figure  8.  Examples of the aircraft in SAR imagery

    图  9  尺度多样、弱小目标示例

    Figure  9.  Examples of aircraft with multi-scale and weak imaging

    图  10  不同型号飞机目标外观相似示例(图中展示了来自Gaofen-3和HISEA-1成像的KC-135和C-135两型飞机)

    Figure  10.  Examples of similar appearance of different aircraft (the KC-135 and C-135 from Gaofen-3 and HISEA-1 imaging)

    图  11  6种民用飞机的光学和SAR影像示例

    Figure  11.  Examples of optical and SAR images for six types of civil aircraft

    图  12  复杂背景干扰示例

    Figure  12.  The interference from the complex background conditions

    图  13  基于深度学习的通用目标检测识别算法示意图

    Figure  13.  Schematic diagram of general deep-learning based object detection and recognition algorithms

    图  14  SAR图像飞机目标检测与识别技术发展总结

    Figure  14.  The summary diagram of aircraft detection and recognition in SAR imagery

    图  15  高质量仿真数据获取技术流程[88]

    Figure  15.  Technical process of collecting high-quality simulation samples[88]

    图  16  SADD数据集上主流检测网络性能比较

    Figure  16.  Performance comparison of mainstream detection networks on SADD dataset

    图  17  不同训练数据使用率下主流分类网络性能比较

    Figure  17.  Performance comparison of mainstream classification networks under different sample utilization rates

    图  18  SAR图像飞机目标检测识别算法发展趋势示意图

    Figure  18.  Development trend diagram for aircraft detection and recognition algorithm in SAR imagery

    图  19  开放环境下高精度、强鲁棒的飞机目标检测识别模型构建示意图

    Figure  19.  Schematic diagram of constructing aircraft detection and recognition model with high precision and strong robust under open environment

    表  1  SAR图像飞机目标检测与识别实测数据集

    Table  1.   Public datasets for aircraft detection and recognition in SAR imagery

    应用领域数据集名称数据采集平台数据集内容及特点
    目标检测SADD数据集
    (Zhang et al., 2022)[62]
    德国
    TerraSAR-X
    ● 在X波段和HH模式下成像,图像分辨率从0.5 m到3.0 m。
    ● 数据集背景复杂、尺度目标多样,存在大量小尺寸目标,还包含了一部分负样本(机场附近的空地和森林等)。
    ● 数据总量为2966幅,其中飞机目标图像884幅,共计7835架飞机。图像大小为224像素×224像素。
    MSAR-1.0数据集
    (陈杰等,2022)[90]
    HISEA-1, Gaofen-3● 数据集的采集场景多样,包括飞机、油罐、桥梁和船只4类目标。
    ● 数据总量为28449幅,其中飞机目标图像108幅,共计6368架飞机。图像大小为256像素×256像素。
    目标识别多角度SAR数据集
    (王汝意等,2022)[83]
    无人机载SAR● 以角度间隔5°,采集了72个不同方位下的飞机目标实测数据。
    ● 数据集包含两类飞机目标:大棕熊100和“空中拖拉机”AT-504,数据总量为144幅,图像大小为128像素×128像素。
    SAR-ACD数据集
    (Sun et al., 2022)[78]
    Gaofen-3● 数据集包括6个民用飞机类别,14个其他飞机类别,共计4322架飞机。
    ● 目前民用飞机类别已开源,数据量共3032幅。其中,6类飞机目标:A220, A320/321, A330, ARJ21, Boeing737和Boeing787的图像分别为464, 512, 510, 514, 528, 504幅。
    ● 为飞机目标细粒度识别提供了数据基准。
    下载: 导出CSV

    表  2  SAR图像飞机目标仿真数据集

    Table  2.   Simulation SAR datasets of aircraft targets

    数据集仿真平台内容及特点
    SPGAN-SAR
    (Liu et al., 2018)[88]
    OpenSARSim[89]● 数据集包含飞机、船只和车辆3类目标,可细分为10个子类。每个子类包括504幅仿真图像,图像大小为158像素×158像素。
    IRIS-SAR数据集
    (Ahmadibeni et al., 2020)[9597]
    IRIS[98]● 包含6类目标,分别为48架民用飞机,58架小型螺旋桨飞机,82架喷气式飞机,29架民用和54架非民用直升机,24辆民用和28辆非民用车辆,以及32艘船只,共355个CAD模型。
    ● 展示了355个CAD模型在5个俯仰角(从15°开始,增量为15°),12个方位角(从0°开始,增量为30°)和3个探测距离(100 m, 200 m, 300 m)下生成的多角度SAR仿真数据集。
    ● 数据总量为63900幅,图像大小为512像素×512像素。可用于目标分类和图像去斑研究。
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
    [2] CASTELLETTI D, FARQUHARSON G, STRINGHAM C, et al. Capella space first operational SAR satellite[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 1483–1486.
    [3] PR Newswire. ICEYE expands world’s largest SAR satellite constellation; launches first U.S. built spacecraft[EB/OL]. https://www.prnewswire.com/news-releases/iceye-expands-worlds-largest-sar-satellite-constellation-launches-first-us-built-spacecraft-301460822.html, 2022.
    [4] 徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 1–463.

    XU Feng, WANG Haipeng, and JIN Yaqiu. Intelligent Interpretation of Synthetic Aperture Radar Images[M]. Beijing: Science Press, 2020: 1–463.
    [5] ROSS T D, BRADLEY J J, HUDSON L J, et al. SAR ATR: So what’s the problem? An MSTAR perspective[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, United States, 1999: 662–672.
    [6] 郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020.

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020.
    [7] NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–24.
    [8] NOVAK L M, HALVERSEN S D, OWIRKA G J, et al. Effects of polarization and resolution on the performance of a SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1995, 8(1): 49–68.
    [9] KREITHEN D E, HALVERSEN S S, and OWIRKA G J. Discriminating targets from clutter[J]. Lincoln Laboratory Journal, 1993, 6(1): 25–52.
    [10] ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 143–172. doi: 10.1109/MGRS.2020.3046356.
    [11] “天智杯”人工智能挑战赛[EB/OL]. https://rsaicp.com.

    “Smart satellite” artificial intelligence challenge[EB/OL]. https://rsaicp.com, 2021.
    [12] “中科星图杯”国际高分遥感图像解译大赛[EB/OL]. https://www.gaofen-challenge.com, 2021.

    “GEOVIS CUP” Gaofen challenge on automated high-resolution earth observation image interpretation[EB/OL]. https://www.gaofen-challenge.com, 2021.
    [13] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230–246.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 230–246.
    [14] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 169–211.
    [15] 陈玉洁, 赵凌君, 匡纲要. 基于可变参数化几何模型的SAR图像飞机目标特征提取方法[J]. 现代雷达, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.

    CHEN Yujie, ZHAO Lingjun, and KUANG Gangyao. Feature extraction of aircraft targets in SAR image based on parametric geometric model[J]. Modern Radar, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.
    [16] 高君, 高鑫, 孙显. 基于几何特征的高分辨率SAR图像飞机目标解译方法[J]. 国外电子测量技术, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.

    GAO Jun, GAO Xin, and SUN Xian. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images[J]. Foreign Electronic Measurement Technology, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.
    [17] 窦方正, 刁文辉, 孙显, 等. 基于深度形状先验的高分辨率SAR飞机目标重建[J]. 雷达学报, 2017, 6(5): 503–513. doi: 10.12000/JR17047.

    DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft reconstruction in high resolution SAR images using deep shape prior[J]. Journal of Radars, 2017, 6(5): 503–513. doi: 10.12000/JR17047.
    [18] 匡纲要, 高贵, 蒋咏梅, 等. 合成孔径雷达目标检测理论、算法及应用[M]. 长沙: 国防科技大学出版社, 2007: 133–165.

    KUANG Gangyao, GAO Gui, JIANG Yongmei, et al. Synthetic Aperture Radar Target: Detection Theory Algorithms and Applications[M]. Changsha: National University of Defense Technology Press, 2007: 133–165.
    [19] HE Chu, TU Mingxia, LIU Xinlong, et al. Mixture statistical distribution based multiple component model for target detection in high resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 336. doi: 10.3390/ijgi6110336.
    [20] TAN Yihua, LI Qingyun, LI Yansheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J]. Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071.
    [21] DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft recognition in high resolution SAR images using saliency map and scattering structure features[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1575–1578.
    [22] CHEN Jiehong, ZHANG Bo, and WANG Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845.
    [23] ZHANG Yueting, DING Chibiao, LEI Bin, et al. Feature modeling of SAR images for aircrafts based on typical structures[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7007–7010.
    [24] FU Kun, DOU Fangzheng, LI Hengchao, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206–4217. doi: 10.1109/JSTARS.2018.2872018.
    [25] ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
    [26] 刘小波, 肖肖, 王凌, 等. 基于无锚框的目标检测方法及其在复杂场景下的应用进展[J]. 自动化学报, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.

    LIU Xiaobo, XIAO Xiao, WANG Ling, et al. Anchor-free based object detection methods and its application progress in complex scenes[J]. Acta Automatica Sinica, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.
    [27] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [28] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [29] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [30] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
    [31] TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787.
    [32] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [33] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767v1, 2018.
    [34] GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430v2, 2021.
    [35] WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475.
    [36] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
    [37] UZKENT B, YEH C, and ERMON S. Efficient object detection in large images using deep reinforcement learning[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 1813–1822.
    [38] ZHANG Linbin, LI Chuyin, ZHAO Lingjun, et al. A cascaded three-look network for aircraft detection in SAR images[J]. Remote Sensing Letters, 2020, 11(1): 57–65. doi: 10.1080/2150704X.2019.1681599.
    [39] GUO Qian, WANG Haipeng, KANG Lihong, et al. Aircraft target detection from spaceborne SAR image[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1168–1171.
    [40] WANG Jielan, XIAO Hongguang, CHEN Lifu, et al. Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from SAR images[J]. Remote Sensing, 2021, 13(5): 910. doi: 10.3390/rs13050910.
    [41] XIAO Xiayang, YU Xueping, and WANG Haipeng. A high-efficiency aircraft detection approach utilizing auxiliary information in SAR images[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1700–1703.
    [42] 郭倩, 王海鹏, 徐丰. 星载合成孔径雷达图像的飞机目标检测[J]. 上海航天, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.

    GUO Qian, WANG Haipeng, and XU Feng. Aircraft target detection from spaceborne synthetic aperture radar image[J]. Aerospace Shanghai, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.
    [43] 赵琰, 赵凌君, 匡纲要. 复杂环境大场景SAR图像飞机目标快速检测[J]. 电波科学学报, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.

    ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Fast detection of aircrafts in complex large-scene SAR images[J]. Chinese Journal of Radio Science, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.
    [44] LI Chuyin, ZHAO Lingjun, and KUANG Gangyao. A two-stage airport detection model on large scale SAR images based on faster R-CNN[C]. SPIE 11179, Eleventh International Conference on Digital Image Processing, Guangzhou, China, 2019: 515–525.
    [45] CHEN Lifu, TAN Siyu, PAN Zhouhao, et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12(3): 560. doi: 10.3390/rs12030560.
    [46] YIN Shoulin, LI Hang, and TENG Lin. Airport detection based on improved faster RCNN in large scale remote sensing images[J]. Sensing and Imaging, 2020, 21(1): 49. doi: 10.1007/s11220-020-00314-2.
    [47] 王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009.

    WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009.
    [48] DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141. doi: 10.1109/LGRS.2015.2498644.
    [49] DIAO Wenhui, DOU Fangzheng, FU Kun, et al. Aircraft detection in SAR images using saliency based location regression network[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 2334–2337.
    [50] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.

    LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.
    [51] AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534.
    [52] XIAO Xiayang, JIA Hecheng, XIAO Penghao, et al. Aircraft detection in SAR images based on peak feature fusion and adaptive deformable network[J]. Remote Sensing, 2022, 14(23): 6077. doi: 10.3390/rs14236077.
    [53] CHEN Lifu, LUO Ru, XING Jin, et al. Geospatial transformer is what you need for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225715. doi: 10.1109/TGRS.2022.3162235.
    [54] WANG Zhen, XU Nan, GUO Jianxin, et al. SCFNet: Semantic condition constraint guided feature aware network for aircraft detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239420. doi: 10.1109/TGRS.2022.3224599.
    [55] HAN Ping, LIAO Dayu, HAN Binbin, et al. SEAN: A simple and efficient attention network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(18): 4669. doi: 10.3390/rs14184669.
    [56] GUO Qian, WANG Haipeng, and XU Feng. Scattering Enhanced attention pyramid network for aircraft detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7570–7587. doi: 10.1109/TGRS.2020.3027762.
    [57] 李广帅, 苏娟, 李义红, 等. 基于卷积神经网络与注意力机制的SAR图像飞机检测[J]. 系统工程与电子技术, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.

    LI Guangshuai, SU Juan, LI Yihong, et al. Aircraft detection in SAR images based on convolutional neural network and attention mechanism[J]. Systems Engineering and Electronics, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.
    [58] 夏一帆, 赵凤军, 王樱洁, 等. 基于注意力和自适应特征融合的SAR图像飞机目标检测[J/OL]. 电讯技术, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.

    XIA Yifan, ZHAO Fengjun, WANG Yingjie, et al. Aircraft detection in SAR images based on attention and adaptive feature fusion[J/OL]. Telecommunication Engineering, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.
    [59] 李佳芯, 朱卫纲, 杨莹, 等. 基于改进YOLOv5的SAR图像飞机目标检测[J]. 电光与控制, 2023, 30(8): 61–67. doi: 10.39691/j.issn.167-637X.2023.08.011.

    LI Jiaxin, ZHU Weigang, YANG Ying, at al. Aircraft targets in SAR images based on improved YOLOv5[J]. Electronics Optics & Control, 2023, 30(8): 61–67. doi: 10.39691/j.issn.1671-637X.2023.08.011.
    [60] GUO Qian, WANG Haipeng, and XU Feng. Aircraft detection in high-resolution SAR images using scattering feature information[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5.
    [61] KANG Yuzhuo, WANG Zhirui, FU Jiamei, et al. SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5218317. doi: 10.1109/TGRS.2021.3130899.
    [62] ZHANG Peng, XU Hao, TIAN Tian, et al. SEFEPNet: Scale expansion and feature enhancement pyramid network for SAR aircraft detection with small sample dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3365–3375. doi: 10.1109/JSTARS.2022.3169339.
    [63] GE Ji, WANG Chao, ZHANG Bo, et al. Azimuth-Sensitive object detection of high-resolution SAR images in complex scenes by using a spatial orientation attention enhancement network[J]. Remote Sensing, 2022, 14(9): 2198. doi: 10.3390/rs14092198.
    [64] ZHANG Peng, XU Hao, TIAN Tian, et al. SFRE-Net: Scattering feature relation enhancement network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(9): 2076. doi: 10.3390/rs14092076.
    [65] ZHAO Yan, ZHAO Lingjun, LI Chuyin, et al. Pyramid attention dilated network for aircraft detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 662–666. doi: 10.1109/LGRS.2020.2981255.
    [66] 赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.

    ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
    [67] ZHAO Yan, ZHAO Lingjun, LIU Zhong, et al. Attentional feature refinement and alignment network for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220616. doi: 10.1109/TGRS.2021.3139994.
    [68] LUO Ru, CHEN Lifu, XING Jin, et al. A fast aircraft detection method for SAR images based on efficient bidirectional path aggregated attention network[J]. Remote Sensing, 2021, 13(15): 2940. doi: 10.3390/rs13152940.
    [69] HE Chu, TU Mingxia, XIONG Dehui, et al. A component-based multi-layer parallel network for airplane detection in SAR imagery[J]. Remote Sensing, 2018, 10(7): 1016. doi: 10.3390/rs10071016.
    [70] 闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005.

    YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005.
    [71] LI Mingwu, WEN Gongjian, HUANG Xiaohong, et al. A lightweight detection model for SAR aircraft in a complex environment[J]. Remote Sensing, 2021, 13(24): 5020. doi: 10.3390/rs13245020.
    [72] LIN Sizhe, CHEN Ting, HUANG Xiaohong, et al. Synthetic aperture radar image aircraft detection based on target spatial imaging characteristics[J]. Journal of Electronic Imaging, 2022, 32(2): 021608. doi: 10.1117/1.JEI.32.2.021608.
    [73] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [74] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
    [75] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539.
    [76] 严继伟, 李广帅, 苏娟. 基于多尺度生成式对抗网络的SAR飞机数据集增广[J]. 电光与控制, 2022, 29(7): 62–68.

    YAN Jiwei, LI Guangshuai, and SU Juan. SAR aircraft data sets augmentation based on multi-scale generative adversarial network[J]. Electronics Optics & Control, 2022, 29(7): 62–68.
    [77] GAO Quanwei, FENG Zhixi, YANG Shuyuan, et al. Multi-Path interactive network for aircraft identification with optical and SAR images[J]. Remote Sensing, 2022, 14(16): 3922. doi: 10.3390/rs14163922.
    [78] SUN Xian, LV Yixuan, WANG Zhirui, et al. SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi: 10.1109/TGRS.2022.3166174.
    [79] ZHAO Danpei, CHEN Ziqiang, GAO Yue, et al. Classification matters more: Global instance contrast for fine-grained SAR aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203815. doi: 10.1109/TGRS.2023.3250507.
    [80] 吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi: 10.12000/JR22044.

    LYU Yixuan, WANG Zhirui, WANG Peijin, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044.
    [81] KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi: 10.1109/TGRS.2023.3236987.
    [82] PAN Zongxu, QIU Xiaolan, HUANG Zhongling, et al. Airplane recognition in TerraSAR-X images via scatter cluster extraction and reweighted sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 112–116. doi: 10.1109/LGRS.2016.2628162.
    [83] 王汝意, 张汉卿, 韩冰, 等. 基于角度内插仿真的飞机目标多角度SAR数据集构建方法研究[J]. 雷达学报, 2022, 11(4): 637–651. doi: 10.12000/JR21193.

    WANG Ruyi, ZHANG Hanqing, HAN Bing, et al. Multiangle SAR dataset construction of aircraft targets based on angle interpolation simulation[J]. Journal of Radars, 2022, 11(4): 637–651. doi: 10.12000/JR21193.
    [84] AHMADIBENI A, JONES B, BOROOSHAK L, et al. Automatic target recognition of aerial vehicles based on synthetic SAR imagery using hybrid stacked denoising auto-encoders[C]. SPIE 11393, Algoritchms for Synthetic Aperture Radar Imagery XXVII, 2020: 71–82.
    [85] LIU Lei, PAN Zongxu, QIU Xiaolan, et al. SAR target classification with CycleGAN transferred simulated samples[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4411–4414.
    [86] AUER S, BAMLER R, and REINARTZ P. RaySAR-3D SAR simulator: Now open source[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6730–6733.
    [87] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
    [88] LIU Wenlong, ZHAO Yuejin, LIU Ming, et al. Generating simulated SAR images using Generative Adversarial Network[C]. SPIE 10752, Applications of Digital Image Processing XLI, San Diego, USA, 2018: 32–42.
    [89] Qi Bin OpenSARSim[EB/OL]. https://sourceforge.net/projects/opensarsimongpu/, 2007.
    [90] 陈杰, 黄志祥, 夏润繁. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.

    CHEN Jie, HUANG Zhixiang, and XIA Runfan. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
    [91] AFRL and DARPA. Sensor data management system website, MSTAR Overview[EB/OL]. https://www.sdms.afrl.af.mil/index.php?collection=mstar, 2022.
    [92] LEWIS B, SCARNATI T, SUDKAMP E, et al. A SAR dataset for ATR development: The synthetic and measured paired labeled experiment (SAMPLE)[C]. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, Baltimore, USA, 2019: 39–54.
    [93] HAZLETT M, ANDERSH D J, LEE S W, et al. XPATCH: A high-frequency electromagnetic scattering prediction code using shooting and bouncing rays[C]. SPIE 2469, Targets and Backgrounds: Characterization and Representation, Orlando, USA, 1995: 266–275.
    [94] ANDERSH D, MOORE J, KOSANOVICH S, et al. Xpatch 4: The next generation in high frequency electromagnetic modeling and simulation software[C]. Record of the IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 844–849.
    [95] AHMADIBENI A, BOROOSHAK L, JONES B, et al. Aerial and ground vehicles synthetic SAR dataset generation for automatic target recognition[C]. SPIE 11393, Algorithms for Synthetic Aperture Radar Imagery XXVII, California, United States, 2020: 96–107.
    [96] AHMADIBENI A, JONES B, SMITH D, et al. Dynamic transfer learning from physics-based simulated SAR imagery for automatic target recognition[C]. 3rd International Conference on Dynamic Data Driven Application Systems, Boston, USA, 2020: 152–159.
    [97] JONES B, AHMADIBENI A, and SHIRKHODAIE A. Physics-based simulated SAR imagery generation of vehicles for deep learning applications[C]. SPIE 11511, Applications of Machine Learning, California, United States, 2020: 162–173.
    [98] SHIRKHODAIE A. IRIS-intelligent robotics interface systems[R]. Developed at Tennessee State University, Department of Mechanical and Manufacturing Engineering, 2006.
    [99] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [100] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556v6, 2015.
    [101] MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 116–131.
    [102] TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. https://arxiv.org/abs/1905.11946v5, 2020.
    [103] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [104] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
    [105] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
    [106] 金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
    [107] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [108] 郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737–752. doi: 10.12000/JR22178.

    YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178.
    [109] 邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.

    XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
    [110] 黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
    [111] DATCU M, HUANG Zhongling, ANGHEL A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 8–25. doi: 10.1109/MGRS.2023.3237465.
    [112] MISHRA P. Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python[M]. Berkeley: Apress, 2023: 17–249.
    [113] HAQUE A K M B, ISLAM A K M N, and MIKALEF P. Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research[J]. Technological Forecasting and Social Change, 2023, 186: 122120. doi: 10.1016/j.techfore.2022.122120.
    [114] ZHANG Quanshi, WANG Xin, WU Yingnian, et al. Interpretable CNNs for object classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3416–3431. doi: 10.1109/TPAMI.2020.2982882.
    [115] LUO Ru, XING Jin, CHEN Lifu, et al. Glassboxing deep learning to enhance aircraft detection from SAR imagery[J]. Remote Sensing, 2021, 13(18): 3650. doi: 10.3390/rs13183650.
    [116] KAWAUCHI H and FUSE T. SHAP-Based interpretable object detection method for satellite imagery[J]. Remote Sensing, 2022, 14(9): 1970. doi: 10.3390/rs14091970.
    [117] GUO Xianpeng, HOU Biao, REN Bo, et al. Network pruning for remote sensing images classification based on interpretable CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605615. doi: 10.1109/TGRS.2021.3077062.
    [118] BELLONI C, BALLERI A, AOUF N, et al. Explainability of deep SAR ATR through feature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 659–673. doi: 10.1109/TAES.2020.3031435.
    [119] 吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179.

    LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179.
    [120] 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.

    GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
    [121] HU Mingzhe, ZHANG Jiahan, MATKOVIC L, et al. Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions[J]. Journal of Applied Clinical Medical Physics, 2023, 24(2): e13898. doi: 10.1002/acm2.13898.
    [122] 杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121.

    DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
    [123] LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
    [124] WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  5608
  • HTML全文浏览量:  1302
  • PDF下载量:  1468
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-06-26
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回