数字编码超表面:迈向电磁功能的可编程与智能调控

蒋卫祥 田翰闱 宋超 张信歌

蒋卫祥, 田翰闱, 宋超, 等. 数字编码超表面:迈向电磁功能的可编程与智能调控[J]. 雷达学报, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167
引用本文: 蒋卫祥, 田翰闱, 宋超, 等. 数字编码超表面:迈向电磁功能的可编程与智能调控[J]. 雷达学报, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167
JIANG Weixiang, TIAN Hanwei, SONG Chao, et al. Digital coding metasurfaces: toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167
Citation: JIANG Weixiang, TIAN Hanwei, SONG Chao, et al. Digital coding metasurfaces: toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167

数字编码超表面:迈向电磁功能的可编程与智能调控

DOI: 10.12000/JR22167
基金项目: 国家自然科学基金(61890544),中央高校基本科研业务费专项资金(2242022k30004)
详细信息
    作者简介:

    蒋卫祥,青年首席教授、博士生导师,研究方向为电磁超材料、透镜天线及光调控信息超表面

    田翰闱,博士生,主要研究方向为透镜天线与可编程超表面

    通讯作者:

    蒋卫祥 wxjiang81@seu.edu.cn

  • 责任主编:李龙 Corresponding Editor: LI Long
  • 中图分类号: TN82

Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)

Funds: The National Natural Science Foundation of China (61890544), The Fundamental Research Funds for the Central Universities (2242022k30004)
More Information
  • 摘要: 数字编码超表面是超材料与超表面领域的重要研究分支。通过数字编码方法替代等效媒质理论来表征超表面,不仅有效简化了超表面设计,而且建立了数字信息与超材料物理的联系。该文系统梳理数字编码超表面的发展历程,重点介绍其在可编程与智能电磁调控领域的最新研究进展。首先,详细介绍数字编码超表面的基本概念以及基于数字编码超表面的信息论研究;然后,具体介绍可编程超表面的工作原理和实现方式以及可编程超表面的不同研究方向,包括辐射式可编程超表面、多维度可编程超表面、时域数字编码超表面与新体制通信系统;接着,介绍智能超表面的最新研究进展,展示其环境感知与自适应电磁调控能力;最后,对超表面的未来发展进行讨论与展望。

     

  • 图  1  1比特数字编码超表面原型[37]

    Figure  1.  1-bit digital coding metasurface prototype[37]

    图  2  超材料信息论

    Figure  2.  Metamaterial information theory

    图  3  可编程超表面原型[37]

    Figure  3.  Programmable metasurface prototype[37]

    图  4  加载变容管的非线性相位分布可编程超表面[46]

    Figure  4.  Nonlinearly-phased programmable metasurface loaded with varactors[46]

    图  5  毫米波与太赫兹可编程超表面

    Figure  5.  Millimeter-wave and terahertz programmable metasurfaces

    图  6  无源辐射式超表面

    Figure  6.  Passive radiation-type metasurfaces

    图  7  动态可重构与可编程辐射式超表面

    Figure  7.  Dynamically reconfigurable and programmable radiation-type metasurfaces

    图  8  多维度可编程超表面

    Figure  8.  Multi-dimensional programmable metasurfaces

    图  9  时域数字编码超表面与新体制通信系统

    Figure  9.  Time-domain digital coding metasurfaces and new wireless communication systems

    图  10  智能超表面

    Figure  10.  Smart metasurfaces

    图  1  1-bit digital coding metasuface prototype[37]

    图  2  Metamaterial information theory

    图  3  Programmable metasurface prototypel[37]

    图  4  Nonlinearly-phased programmable metasurface loaded with varactors[46]

    图  5  Millimeter-wave and terahertz programmable metasurfaces

    图  6  Passive radiaion-lype metasurfaces

    图  7  Dynamically reconfigurable and programmable radiation-type metasurfaces

    图  8  Multi-dimensional programmable metasurfaces

    图  9  Time-domain digital coding metasurfaces and new wireless communication systems

    图  10  Smart metasurfaces

  • [1] SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79. doi: 10.1126/science.1058847
    [2] SILVEIRINHA M and ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403. doi: 10.1103/PhysRevLett.97.157403
    [3] LIU Ruopeng, CHENG Qiang, HAND T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903. doi: 10.1103/PhysRevLett.100.023903
    [4] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    [5] JIANG Weixiang, QIU Chengwei, HAN Tiancheng, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963–6968. doi: 10.1002/adma.201303657
    [6] JIANG Weixiang, GE Shuo, HAN Tiancheng, et al. Shaping 3D path of electromagnetic waves using gradient-refractive-index metamaterials[J]. Advanced Science, 2016, 3(8): 1600022. doi: 10.1002/advs.201600022
    [7] CHEN Xi, MA Huifeng, ZOU Xiaying, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials[J]. Journal of Applied Physics, 2011, 110(4): 044904. doi: 10.1063/1.3622596
    [8] ZHANG Na, JIANG Weixiang, MA Huifeng, et al. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1323–1328. doi: 10.1109/TAP.2018.2880115
    [9] TIAN Hanwei, JIANG Weixiang, LI Xin, et al. An ultrawideband and high-gain antenna based on 3-D impedance-matching metamaterial lens[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3084–3093. doi: 10.1109/TAP.2020.3037751
    [10] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [11] MA Qian, SHI Chuanbo, BAI Guodong, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201700548
    [12] SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi: 10.1038/NMAT3292
    [13] ZHU H L, CHEUNG S W, CHUNG K L, et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4615–4623. doi: 10.1109/TAP.2013.2267712
    [14] XU Peng, WANG Guichen, CAI Xiao, et al. Design and optimization of high-efficiency meta-devices based on the equivalent circuit model and theory of electromagnetic power energy storage[J]. Journal of Physics D:Applied Physics, 2022, 55(19): 195303. doi: 10.1088/1361-6463/ac4e34
    [15] WANG Zhuochao, DING Xumin, ZHANG Kuang, et al. Huygens metasurface holograms with the modulation of focal energy distribution[J]. Advanced Optical Materials, 2018, 6(12): 1800121. doi: 10.1002/adom.201800121
    [16] ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/NNANO.2015.2
    [17] ESTAKHRI N M and ALÙ A. Wave-front transformation with gradient metasurfaces[J]. Physical Review X, 2016, 6(4): 041008. doi: 10.1103/PhysRevX.6.041008
    [18] ASADCHY V S, ALBOOYEH M, TCVETKOVA S N, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces[J]. Physical Review B, 2016, 94(7): 075142. doi: 10.1103/PhysRevB.94.075142
    [19] ZHOU Jiafeng, ZHANG Pei, HAN Jiaqi, et al. Metamaterials and metasurfaces for wireless power transfer and energy harvesting[J]. Proceedings of the IEEE, 2022, 110(1): 31–55. doi: 10.1109/JPROC.2021.3127493
    [20] LI Long, ZHANG Xuanming, SONG Chaoyun, et al. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1518–1528. doi: 10.1109/TMTT.2020.3040962
    [21] SHI Yan, MENG Haoxuan, and WANG Huajie. Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antennas with a low radar cross section[J]. Optics Express, 2021, 29(5): 6794–6809. doi: 10.1364/oe.416976
    [22] LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science&Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
    [23] LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light:Science&Applications, 2018, 7(5): 18008. doi: 10.1038/lsa.2018.8
    [24] TIAN Hanwei, JIANG Weixiang, LI Xin, et al. Generation of high-order orbital angular momentum beams and split beams simultaneously by employing anisotropic coding metasurfaces[J]. Journal of Optics, 2019, 21(6): 065103. doi: 10.1088/2040-8986/ab16b9
    [25] ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials&Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468
    [26] MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [27] GOU Yue, MA Huifeng, WU Liangwei, et al. Broadband spin-selective wavefront manipulations based on pancharatnam-berry coding metasurfaces[J]. ACS Omega, 2021, 6(44): 30019–30026. doi: 10.1021/acsomega.1c04733
    [28] BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi: 10.1002/adom.201800657
    [29] XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919
    [30] KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    [31] QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J].Physical Review Applied, 2018, 9(5): 054050. doi: 10.1103/PhysRevApplied.9.054050
    [32] ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science&Applications, 2020, 9(1): 76. doi: 10.1038/s41377-020-0313-0
    [33] ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205
    [34] WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429
    [35] BAO Lei, FU Xiaojian, WU Ruiyuan, et al. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface[J]. Advanced Materials Technologies, 2021, 6(4): 2001032. doi: 10.1002/admt.202001032
    [36] WU Liangwei, MA Huifeng, GOU Yue, et al. Multitask bidirectional digital coding metasurface for independent controls of multiband and full-space electromagnetic waves[J]. Nanophotonics, 2022, 11(12): 2977–2987. doi: 10.1515/nanoph-2022-0190
    [37] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science&Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [38] GIOVAMPAOLA G D and ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12): 1115–1121. doi: 10.1038/nmat4082
    [39] JING Hongbo, MA Qian, BAI Guodong, et al. Anomalously perfect reflections based on 3-bit coding metasurfaces[J]. Advanced Optical Materials, 2019, 7(9): 1801742. doi: 10.1002/adom.201801742
    [40] CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light:Science&Applications, 2016, 5(11): e16172. doi: 10.1038/lsa.2016.172
    [41] LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156. doi: 10.1002/advs.201600156
    [42] WU Ruiyuan, SHI Chuanbo, LIU Shuo, et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 2018, 6(5): 1701236. doi: 10.1002/adom.201701236
    [43] HAN Jiaqi, LI Long, MA Xiangjin, et al. Adaptively smart wireless power transfer using 2-Bit programmable metasurface[J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 8524–8534. doi: 10.1109/TIE.2021.3105988
    [44] ZHU BoO, ZHAO Junming, and FENG Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3(1): 3059. doi: 10.1038/srep03059
    [45] HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
    [46] TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi: 10.1002/adfm.202203120
    [47] CHEN Lei, MA Qian, JING Hongbo, et al. Space-energy digital-coding metasurface based on an active amplifier[J]. Physical Review Applied, 2019, 11(5): 054051. doi: 10.1103/PhysRevApplied.11.054051
    [48] MA Qian, CHEN Lei, JING Hongbo, et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface[J]. Advanced Optical Materials, 2019, 7(24): 1901285. doi: 10.1002/adom.201901285
    [49] TARAVATI S and ELEFTHERIADES G V. Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification[J]. Nature Communications, 2021, 12(1): 4414. doi: 10.1038/s41467-021-24749-7
    [50] WANG Xin, HAN Jiaqi, TIAN Shuncheng, et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface[J]. Advanced Science, 2022, 9(11): 2105960. doi: 10.1002/advs.202105960
    [51] WANG Qiang, ZHANG Xinge, TIAN Hanwei, et al. Millimeter-wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141. doi: 10.1002/adts.201900141
    [52] WU Jingbo, SHEN Ze, GE Shijun, et al. Liquid crystal programmable metasurface for terahertz beam steering[J]. Applied Physics Letters, 116(13): 131104.
    [53] LIU Chenxi, YANG Fei, FU Xiaojian, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 2021, 9(22): 2100932. doi: 10.1002/adom.202100932
    [54] CHEN Hao, LU Weibing, LIU Zhenguo, et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 2020, 7(6): 1425–1435. doi: 10.1021/acsphotonics.9b01807
    [55] CONG Longqing, PITCHAPPA P, WANG Nan, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J]. Research, 2019, 2019: 7084251. doi: 10.34133/2019/7084251
    [56] MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi: 10.1038/s41467-018-06360-5
    [57] YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi: 10.1002/advs.202100885
    [58] CHEN Benwen, WU Jingbo, LI Weili, et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser&Photonics Reviews, 2022, 16(4): 2100472. doi: 10.1002/lpor.202100472
    [59] GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced optical materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696
    [60] IMANI M F, ABADAL S, and DEL HOUGNE P. Metasurface-programmable wireless network-on-chip[J]. Advanced Science, 2022, 9(26): 2201458. doi: 10.1002/advs.202201458
    [61] VENKATESH S, LU Xuyang, SAEIDI H, et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 2020, 3(12): 785–793. doi: 10.1038/s41928-020-00497-2
    [62] YANG Jin, CHEN Shangtong, CHEN Mao, et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 806–814. doi: 10.1109/TAP.2020.3016170
    [63] LI He, LI Yunbo, SHEN Jialin, et al. Low-profile electromagnetic holography by using coding Fabry-Perot type metasurface with in-plane feeding[J]. Advanced Optical Materials, 2020, 8(9): 1902057. doi: 10.1002/adom.201902057
    [64] XU Peng, TIAN Hanwei, JIANG Weixiang, et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Advanced Optical Materials, 2021, 9(16): 2100159. doi: 10.1002/adom.202100159
    [65] XU Peng, TIAN Hanwei, CAI Xiao, et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Advanced Functional Materials, 2021, 31(25): 2100569. doi: 10.1002/adfm.202100569
    [66] BAI Lin, ZHANG Xin’ge, WANG Qiang, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microwaves,Antennas&Propagation, 2020, 14(15): 1933–1942. doi: 10.1049/iet-map.2020.0415
    [67] WANG Zhenglong, GE Yuehe, PU Jixiong, et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810. doi: 10.1109/TAP.2020.2975265
    [68] LIU Baiyang, WONG Saiwai, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214
    [69] BAI Xudong, ZHANG Fuli, SUN Li, et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser&Photonics Reviews, 2022, 16(11): 2200140. doi: 10.1002/lpor.202200140
    [70] HONG Qiaoru, MA Qian, GAO Xinxin, et al. Programmable amplitude-coding metasurface with multifrequency modulations[J]. Advanced Intelligent Systems, 2020, 3(8): 2000260. doi: 10.1002/aisy.202000260
    [71] MA Qian, HONG Qiaoru, BAI Guodong, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 2020, 13(2): 021003. doi: 10.1103/PhysRevApplied.13.021003
    [72] ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382
    [73] CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi: 10.1002/admt.201900930
    [74] BAO Lei, MA Qian, WU Ruiyuan, et al. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space[J]. Advanced Science, 2021, 8(15): 2100149. doi: 10.1002/advs.202100149
    [75] HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser&Photonics Reviews, 2022, 16(6): 2100718. doi: 10.1002/lpor.202100718
    [76] CHEN Lei, MA Qian, NIE Qianfan, et al. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission[J]. Photonics Research, 2021, 9(2): 116–124. doi: 10.1364/PRJ.412052
    [77] WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials&Interfaces, 2022, 14(25): 29431–29440. doi: 10.1021/acsami.2c05907
    [78] LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials&Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467
    [79] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [80] DAI Junyan, TANG Wangkai, YANG Liuxi, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1618–1627. doi: 10.1109/TAP.2019.2952460
    [81] CHEN Mingzheng, TANG Wankai, DAI Junyan, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2022, 9(1): nwab134. doi: 10.1093/nsr/nwab134
    [82] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    [83] ZHANG Lei, CHEN Mingzheng, TANG Wangkai, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 2021, 4(3): 218–227. doi: 10.1038/s41928-021-00554-4
    [84] ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028
    [85] ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718
    [86] SUN Yalun, ZHANG Xinge, YU Qian, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 2020, 65(11): 883–888. doi: 10.1016/j.scib.2020.03.016
    [87] ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5
    [88] ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi: 10.1117/1.AP.4.2.025001
    [89] ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light:Science&Applications, 2022, 11(1): 126. doi: 10.1038/s41377-022-00817-5
    [90] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light:Science&Applications, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3
    [91] ZHANG Xinge, SUN Yalun, YU Qian, et al. Smart doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 2021, 33(17): 2007966. doi: 10.1002/adma.202007966
    [92] MA Qian, HONG Qiaoru, GAO Xinxin, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271–3278. doi: 10.1515/nanoph-2020-0052
    [93] YU Qian, ZHENG Yining, GU Ze, et al. Self-adaptive metasurface platform based on computer vision[J]. Optics Letters, 2021, 46(15): 3520–3523. doi: 10.1364/OL.427527
    [94] LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light:Science&Applications, 2019, 8(1): 97. doi: 10.1038/s41377-019-0209-z
    [95] WANG Jiawei, HUANG Ziai, XIAO Qiang, et al. High‐precision direction‐of‐arrival estimations using digital programmable metasurface[J]. Advanced Intelligent Systems, , 2021, 4(4): 2100164. doi: 10.1002/aisy.202100164
    [96] WAN Xiang, HUANG Ziai, WANG Jiawei, et al. Joint radar and communication empowered by digital programmable metasurface[J]. Advanced Intelligent Systems, 2022: 2200083. doi: 10.1002/aisy.202200083
    [97] LIU Che, MA Qian, LUO Zhangjie, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113–122. doi: 10.1038/s41928-022-00719-9
  • 加载中
图(20)
计量
  • 文章访问数:  3465
  • HTML全文浏览量:  1543
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 修回日期:  2022-11-25
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回