基于ABSUM的MIMO雷达频谱兼容波形设计

姚誉 李泽清 范文 杜晓林 吴乐南

姚誉, 李泽清, 范文, 等. 基于ABSUM的MIMO雷达频谱兼容波形设计[J]. 雷达学报, 2022, 11(4): 543–556. doi: 10.12000/JR22138
引用本文: 姚誉, 李泽清, 范文, 等. 基于ABSUM的MIMO雷达频谱兼容波形设计[J]. 雷达学报, 2022, 11(4): 543–556. doi: 10.12000/JR22138
YAO Yu, LI Zeqing, FAN Wen, et al. Spectrally compatible waveform design for MIMO radar based on ABSUM method[J]. Journal of Radars, 2022, 11(4): 543–556. doi: 10.12000/JR22138
Citation: YAO Yu, LI Zeqing, FAN Wen, et al. Spectrally compatible waveform design for MIMO radar based on ABSUM method[J]. Journal of Radars, 2022, 11(4): 543–556. doi: 10.12000/JR22138

基于ABSUM的MIMO雷达频谱兼容波形设计

DOI: 10.12000/JR22138
基金项目: 国家自然科学基金(61761019)
详细信息
    作者简介:

    姚 誉(1986-),男,江西宜春人,博士,华东交通大学副教授。主要研究方向为雷达波形设计与处理、雷达通信一体化、最优化理论算法以及阵列信号处理等

    李泽清(1997–),男,广东人,华东交通大学硕士研究生。主要研究方向为雷达通信一体化、波形设计与处理、机器学习等

    范 文(1986–),男,陕西人,博士。主要研究方向为雷达波形设计与处理、雷达通信一体化、最优化理论算法以及阵列信号处理等

    杜晓林(1985-),男,山东肥城人,博士,烟台大学副教授。主要研究方向为优化理论算法及其应用、波形设计、人工智能、机器学习、凸优化、协方差矩阵估计、雷达信号处理

    吴乐南(1952-),男,安徽安庆人,东南大学教授。主要研究方向为物联网技术、车联网、多媒体信息处理、信号检测与估计等

    通讯作者:

    姚誉 yaoyu@ecjtu.edu.cn

  • 责任主编:梁军利 Corresponding Editor: LIANG Junli
  • 中图分类号: TN958

Spectrally Compatible Waveform Design for MIMO Radar Based on ABSUM Method

Funds: The National Natural Science Foundation of China (61761019)
More Information
  • 摘要: 该文讨论了多输入多输出(MIMO)雷达发射波形和接收滤波器的联合优化问题,以确保与叠加的授权通信网络频谱兼容。考虑信号相关杂波的干扰,在发射能量、相似性和频谱兼容约束下,所提出的信干噪比(SINR)最大化的优化问题是NP-hard问题。为此,首先引入辅助变量对原问题进行修正,然后提出了一种基于乘子块连续上界极小化的原对偶(ABSUM)算法求解该问题。此外,利用内点法求解在ABSUM算法每个更新过程中涉及的二次规划问题。最后,仿真结果表明,ABSUM算法在输出SINR、波束图、频谱特性等方面优于现有方法。

     

  • 图  1  已优化波形特征

    Figure  1.  The feature of the optimized waveforms

    图  2  频谱兼容和相似性约束下SINR的迭代曲线

    Figure  2.  The SINRs with spectrum constraint and similarity constraint

    图  3  ABSUM, GFA和SOA算法的优化SINR值和${\varepsilon '}$的关系($ {E}_{I}={10}^{-2},{10}^{-\text{4}},{10}^{-\text{5}} $)

    Figure  3.  The optimal SINR values of ABSUM, GFA and SOA versus ${\varepsilon '}$ with $ {E}_{I}={10}^{-2},{10}^{-\text{4}},{10}^{-\text{5}} $

    图  4  不同频谱约束${E_I}$下优化SINR值与相似性约束的关系(${\varepsilon }{{'}}=\text{0}\text{.5},\text{1}\text{.0},\text{2}\text{.0}$)

    Figure  4.  The optimal SINR values of ABSUM, GFA and SOA versus ${E_I}$ with ${\varepsilon }{{'}}=\text{0}\text{.5},\text{1}\text{.0},\text{2}\text{.0}$

    图  5  ABSUM和GFA算法的输出SINR与${E_I}$${\varepsilon '}$的关系

    Figure  5.  The output SINRs of the proposed ABSUM and GFA versus the input SNR for different ${E_I}$ and ${\varepsilon '}$

    图  6  SINR值与目标角和干扰源角度的关系图

    Figure  6.  The SINR versus the uncertainty of the target angle and the interference angle

    图  7  波形功率谱图(${\varepsilon '} = 1.0$)

    Figure  7.  ESDs of the waveform optimized via ABSUM versus normalized frequency with ${\varepsilon '} = 1.0$

    图  8  波形功率谱图(${E_I} = {10^{ - 4}}$)

    Figure  8.  ESDs of the waveform optimized via ABSUM versus normalized frequency with ${E_I} = {10^{ - 4}}$

    图  9  频谱和相似性约束下的波束图(频谱约束${E_I} = {10^{ - 4}}$)

    Figure  9.  The beampatterns of the ABSUM and GFA with spectrum and similarity constraints (${E_I} = {10^{ - 4}}$)

    图  10  MIMO模糊度函数的距离-角度切割

    Figure  10.  Range-azimuth plane of MIMO CAF

    算法1 基于ABSUM的发射和接收联合设计算法
    Alg. 1 ABSUM algorithm for solving transmit-receive design
     输入:$k = 0$,初始化${\boldsymbol{c} }_{\rm{r}}^k$, ${\boldsymbol{t} }_{\rm{r}}^k$, ${{\boldsymbol{u}}^k}$, ${v^k}$和收敛参数$ {\epsilon}^{{\rm{abs}}} $, $ {\epsilon}^{{\rm{rel}}} $
     1:重复
     2:$k = k + 1$
     3:通过求${\boldsymbol{\varPsi } }({ {\boldsymbol{c} }^k})$和${ {\boldsymbol{\varPsi } }_{{\rm{in}}} }({ {\boldsymbol{c} }^k})$的最大广义特征值来更新${{\boldsymbol{w}}^k}$。
     4:使用内点法求解问题(16)和问题(18)更新${\boldsymbol{c} }_{\rm{r}}^k$和${\boldsymbol{t} }_{\rm{r}}^k$。
     5:求解问题(12)更新${{\boldsymbol{u}}^k}$和${v^k}$
     6:如果满足收敛的终止条件,则算法停止迭代。
    下载: 导出CSV

    表  1  仿真参数

    Table  1.   Simulation parameter

    参数数值参数数值
    发射天线${N_{\rm{t}}}$4接收天线${N_{\rm{r}}}$8
    采样个数${N_{\rm{s}}}$64干扰源角度${\theta _k}$–50°, –10°, 40°
    雷达目标角度${\theta _0}$${\text{1}}{5^ \circ }$无线网络归一化频率$f_{{\rm{lower}}}^i$, $f_{{\rm{upper}}}^i$$[0.2,0.3]$
    $[0.75,0.85]$
    最大干扰量${E_I}$${10}^{-2}, {10}^{-\text{3} }, {10}^{-\text{5} }$相似性参数$\varepsilon $$0.5,0.8,1.0,2.0$
    下载: 导出CSV

    表  2  ABSUM, GFA和SOA算法的优化SINR值(dB)和全局计算时间(s)

    Table  2.   SINR value (dB) and global computational times (s) for ABSUM, GFA and SOA

    ${\varepsilon'}$ABSUMGFASOA
    SINRTimeSINRTimeSINRTime
    0.517.215.315.4135.813.6637.9
    1.018.819.116.5141.514.8853.1
    1.319.221.517.5154.416.5963.1
    2.019.319.819.3169.319.3812.1
    下载: 导出CSV

    表  3  ABSUM、BCD、MM和GFA的SINR值(dB)和全局计算时间(s)

    Table  3.   SINR value (dB) and global computational times (s) for ABSUM, BCD, MM and GFA

    ${E_I}$ABSUMSOAMMGFA
    SINRtimeSINRtimeSINRtimeSINRtime
    ${10^{ - 2}}$19.214.316.745.319.110.216.8120.8
    ${10^{ - 3}}$19.016.216.855.218.913.416.7134.5
    ${10^{ - 4}}$18.819.116.866.818.615.716.5141.5
    下载: 导出CSV
  • [1] LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [2] YU Xianxiang, CUI Guolong, YANG Jing, et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 522–536. doi: 10.1109/TVT.2019.2951399
    [3] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [4] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(12): 14–25. doi: 10.1109/MAES.2016.150216
    [5] STINCO P, GRECO M, GINI F, et al. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20–27. doi: 10.1109/MAES.2016.150193
    [6] AUBRY A, DE MAIO A, GOVONI M A, et al. On the design of multi-spectrally constrained constant modulus radar signals[J]. IEEE Transactions on Signal Processing, 2020, 68: 2231–2243. doi: 10.1109/TSP.2020.2983642
    [7] YAO Yu, WU Lenan, and LIU Haitao. Robust transceiver design in the presence of eclipsing loss for spectrally dense environments[J]. IEEE Systems Journal, 2021, 15(3): 4334–4345. doi: 10.1109/JSYST.2020.3024531
    [8] YAO Yu, LIU Haitao, MIAO Pu, et al. MIMO radar design for extended target detection in a spectrally crowded environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021.
    [9] YAO Yu, LIU Haitao, and WU Lenan. Robust transmit waveform and receive filter design in the presence of eclipsing loss and signal-dependent interference[J]. Signal Processing, 2021, 181: 107901. doi: 10.1016/j.sigpro.2020.107901
    [10] CHEN Chunyang and VAIDYANATHAN P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632
    [11] CUI Guoling, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [12] LIANG Junli, STOICA P, JING Yang, et al. Phase retrieval via the alternating direction method of multipliers[J]. IEEE Signal Processing Letters, 2018, 25(1): 5–9. doi: 10.1109/lsp.2017.2767826
    [13] ZHAO Licheng and PALOMAR D P. Maximin joint optimization of transmitting code and receiving filter in radar and communications[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 850–863. doi: 10.1109/tsp.2016.2625267
    [14] 付月, 崔国龙, 余显祥. 信号相关杂波背景下稳健的恒模序列与接收滤波器设计方法[J]. 雷达学报, 2017, 6(3): 292–299. doi: 10.12000/JR16158

    FU Yue, CUI Guolong, and YU Xianxiang. Robust design of constant modulus sequence and receiver filter in the presence of signal-dependent clutter[J]. Journal of Radars, 2017, 6(3): 292–299. doi: 10.12000/JR16158
    [15] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [16] WU Linlong, BABU P, and PALOMA D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/tsp.2017.2787115
    [17] TANG Bo, LI Jian, and LIANG Junli. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J]. Signal Processing, 2018, 142: 398–402. doi: 10.1016/j.sigpro.2017.08.003
    [18] FAN Wen, LIANG Junli, LU Guangshan, et al. Spectrally-agile waveform design for wideband MIMO radar transmit beampattern synthesis via majorization-ADMM[J]. IEEE Transactions on Signal Processing, 2021, 69: 1563–1578. doi: 10.1109/TSP.2021.3052997
    [19] AUBRY A, DE MAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [20] ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [21] YANG Jing, AUBRY A, DE MAIO A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2022, 70: 1320–1332. doi: 10.1109/TSP.2022.3144953
    [22] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [23] TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [24] CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with papr and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [25] O’ROURKE S M, SETLUR P, RANGASWAMY M, et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Transactions on Signal Processing, 2020, 68: 1744–1759. doi: 10.1109/TSP.2020.2977271
    [26] QIAN Junhui, LOPS M, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and mimo communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624
    [27] CHENG Xu, AUBRY A, CIUONZO D, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370–384. doi: 10.1109/TAES.2017.2650619
    [28] HONG Mingyi, CHANG T H, WANG Xiangfeng, et al. A block successive upper-bound minimization method of multipliers for linearly constrained convex optimization[J]. Mathematics of Operations Research, 2020, 45(3): 833–861. doi: 10.1287/moor.2019.1010
    [29] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [30] RAZAVIYAYN M, HONG Mingyi, and LUO Zhiquan. A unified convergence analysis of block successive minimization methods for nonsmooth optimization[J]. SIAM Journal on Optimization, 2013, 23(2): 1126–1153. doi: 10.1137/120891009
    [31] HONG Mingyi, RAZAVIYAYN M, LUO Zhiquan, et al. A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57–77. doi: 10.1109/MSP.2015.2481563
    [32] GERSHMAN A B, SIDIROPOULOS N D, SHAHBAZPANAHI S, et al. Convex optimization-based beamforming[J]. IEEE Signal Processing Magazine, 2010, 27(3): 62–75. doi: 10.1109/MSP.2010.936015
    [33] CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2013, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [34] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [35] 王璐璐. 基于信息论的自适应波形设计[D]. [博士论文], 国防科学技术大学, 2015.

    WANG Lulu. Adaptive waveform design based on information theory[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [36] 张钰. 基于最大互信息准则的认知雷达波形优化算法研究[D]. [硕士论文], 西安电子科技大学, 2012.

    ZHANG Yu. Study on the waveform design algorithm for cognitive radar based on maximum mutual information rule[D]. [Master dissertation], Xidian University, 2012.
    [37] TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186
    [38] GRANT M and BOYD S. CVX package[EB/OL]. http://www.cvxr.com/cvx.r, 2012.
    [39] YU Xianxiang, ALHUJAILI K, CUI Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practical constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974–1989. doi: 10.1109/TSP.2020.2979602
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  313
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-08-15
  • 网络出版日期:  2022-08-26
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回