基于几何约束移动最小二乘的TomoSAR山区点云高精度三维重建方法

李晓婉 梁兴东 张福博 刘云龙 李焱磊 郭其昌 万阳良 卜祥玺

李晓婉, 梁兴东, 张福博, 等. 基于几何约束移动最小二乘的TomoSAR山区点云高精度三维重建方法[J]. 雷达学报, 2022, 11(3): 363–375. doi: 10.12000/JR22049
引用本文: 李晓婉, 梁兴东, 张福博, 等. 基于几何约束移动最小二乘的TomoSAR山区点云高精度三维重建方法[J]. 雷达学报, 2022, 11(3): 363–375. doi: 10.12000/JR22049
LI Xiaowan, LIANG Xingdong, ZHANG Fubo, et al. A geometry constrained moving least squares-based high-precision 3D reconstruction method of mountains from TomoSAR point clouds[J]. Journal of Radars, 2022, 11(3): 363–375. doi: 10.12000/JR22049
Citation: LI Xiaowan, LIANG Xingdong, ZHANG Fubo, et al. A geometry constrained moving least squares-based high-precision 3D reconstruction method of mountains from TomoSAR point clouds[J]. Journal of Radars, 2022, 11(3): 363–375. doi: 10.12000/JR22049

基于几何约束移动最小二乘的TomoSAR山区点云高精度三维重建方法

DOI: 10.12000/JR22049
基金项目: 国家部委基金
详细信息
    作者简介:

    李晓婉(1994-),女,吉林长春人,中国科学院大学电子电气与通信工程学院在读博士研究生(培养单位:中国科学院空天信息创新研究院)。主要研究方向为阵列层析SAR三维重建点云处理技术

    梁兴东(1973-),男,陕西人,2002年在北京理工大学获得博士学位,现任中国科学院空天信息创新研究院研究员,博士生导师。主要研究方向为高分辨率合成孔径雷达系统、成像处理应用、实时信号处理

    张福博(1988-),男,河北人,博士,副研究员。主要研究方向为SAR三维成像技术和高分辨率宽测绘带成像技术等

    刘云龙(1988-),男,河北武强人,博士,助理研究员,2017年在中国科学院大学获得博士学位。主要研究方向为机载SAR精细化定标处理,目前已发表论文7篇

    李焱磊(1983-),男,河北定兴人,2013年在中国科学院大学电子电气与通信工程学院获得博士学位(培养单位:中国科学院电子学研究所),现为中国科学院空天信息创新研究院研究员。主要研究方向为SAR成像处理、新体制微波成像处理与架构设计,目前已发表论文30余篇

    郭其昌(1992-),男,山东人,博士,助理研究员,2021年在中国科学院空天信息创新研究院获得博士学位。主要研究方向为雷达信号处理、新体制微波成像方法、穿墙雷达成像

    万阳良(1988-),男,江西人,博士,助理研究员。主要研究方向为毫米波雷达系统技术

    卜祥玺(1991-),男,山东济南人,2019年在中国科学院空天信息创新研究院获得博士学位。现为中国科学院空天信息创新研究院助理研究员,主要研究方向为新体制雷达系统设计

    通讯作者:

    梁兴东 xdliang@mail.ie.ac.cn

  • 责任主编:廖明生 Corresponding Editor: LIAO Mingsheng
  • 中图分类号: TN959.3

A Geometry Constrained Moving Least Squares-based High-precision 3D Reconstruction Method of Mountains from TomoSAR Point Clouds

Funds: The National Ministries Foundation
More Information
  • 摘要: 层析合成孔径雷达(TomoSAR)是一种先进的山区三维重建技术手段。然而,TomoSAR点云存在着较强烈的高程向定位误差,给高精度的山区三维重建带来了挑战。针对这个问题,该文提出了一种基于几何约束移动最小二乘(MLS)的高精度TomoSAR山区点云三维重建方法。该方法不仅具有传统MLS基于局部子空间思想进行复杂曲面结构拟合的优势,还可以充分地利用TomoSAR点云高程随地距单调递增的特点进行重建误差修正。首先,将点云投影到新的方位-地距-高程坐标系。然后,使用所提的基于迭代求解的几何约束MLS进行高程向定位误差修正。最后,通过投影变换得到山区三维重建结果。仿真和实测的机载阵列TomoSAR山区数据以及AW3D30 DSM数据和1:10000 DEM数据,验证了该文方法的有效性,同时表明了机载阵列TomoSAR用于山区高精度三维重建等应用的可行性和优越性。

     

  • 图  1  TomoSAR山区观测几何示意图(yz分别表示地距向和高度向,rs分别表示斜距向和高程向)

    Figure  1.  Diagram of TomoSAR mountain observation geometry (y and z indicate the ground direction and the height direction, respectively, r and s indicate the range direction and the elevation direction, respectively)

    图  2  几何约束MLS方法流程图

    Figure  2.  Flowchart of the geometry constrained MLS method

    图  3  斜距-高程平面S形山区叠掩地形结构图

    Figure  3.  The S shaped layover mountainous terrain on the range-elevation plane

    图  4  两种典型地形驻点定位示意

    Figure  4.  Diagram of two typical terrain for stagnation point positioning

    图  5  投影变换示意

    Figure  5.  Diagram of projection transform

    图  6  LS, MLS和本文方法的仿真结果

    Figure  6.  Simulation results of LS, MLS and the proposed method

    图  7  基于数据1的不同方法的精度对比曲线

    Figure  7.  The precision comparison curves of different methods based on data 1

    图  8  本文方法对于切片5的主要中间结果

    Figure  8.  The main intermediate results of the proposed method for slice 5

    图  9  观测场景的SAR图像(颜色图表示归一化后的散射强度)

    Figure  9.  SAR image of the observation scene (the color map indicates the normalized scattering intensity)

    图  10  实测实验的处理结果

    Figure  10.  Results of the real experiment

    图  11  观测场景的光学图像

    Figure  11.  Optical image of the observation scene

    图  12  三维重建图像(颜色图表示归一化后的散射强度)

    Figure  12.  The three-dimensional reconstruction image (the color map indicates the normalized scattering intensity)

    表  1  几何约束MLS求解算法

    Table  1.   The solution algorithm of the geometry constrained MLS

     输入:投影变换点云${\rm{P} } = \left\{ { {p_i}\left( { {a_i},{y_i},{h_i} } \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_{{\rm{total}}} } } \right\}$,斜距r,以及MLS参数和单调递增修正参数${\rm{pwin}}$,
        ${\rm{Te}}$和${\rm{dh}}$。
     1:步骤1 执行MLS,输出点云${\rm{P} }' = \left\{ { {p_i}\left( { {a_i},{y_i},h_i'} \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_{{\rm{total}}} } } \right\}$;
     2:步骤2 斜距修正:考虑到MLS拟合结果可能存在斜距误差,该步会使用原始斜距r对其修正,得点云
       ${\rm{P}}' = \left\{ { {p_i}\left( { {a_i},{r_i},h_i'} \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_{{\rm{total}}} } } \right\}$;
     3:步骤3 单调递增判断:
     4:  (i) 更新点云${\rm{P}}'$的地距:$y_i' = {r_i}\sin{\theta _i}$,其中$ {\theta _i} $可由式(3)求得;
     5:  (ii) 计算稀疏高程$h_i' \pm {\rm{dh}}$在子空间${\rm{pwin}}$内的权函数${\boldsymbol{v}} = \left\{ { {v_i}|i = 1,2, \cdots ,{N_{ {\rm{total} } } } } \right\}$;
     6:  (iii) 如果存在$ {v_i} = 1 $,进入步骤4,反之,输出结果。
     7:步骤4 单调递增修正:
     8:  (i) 逐方位向循环${\rm{P}}_j' = \left\{ { {p_i}\left( { {a_i},y_i',h_i'} \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_j} } \right\}$
     9:    * 更新地距,得到点${p_i}\left( { {a_i},y_i'',h_i'} \right)$,其中$y'' = {\rm{sort}}\left( {y'} \right)$
     10:    * 初始化:${\rm{Is}}\_{\rm{ite}} = 0,{\rm{de}} = 1,n = 1$
     11:    * 逐点修正:
     12:     ${\rm{while}}\;\;\;n < {N_j}$
     13:      计算稀疏高程$h_i' \pm {\rm{dh}}$在子空间${\rm{pwin}}$内的权函数$ {v_n} $
     14:      ${\rm{if}}\;\;{v_n}\;\;{\rm{and}}\;\;{\rm{de}} > {\rm{Te}}$
     15:       对该点执行MLS,得到${p_i}\left( { {a_i},y_i'',h_i'' } \right)$
     16:       更新${\rm{de}} = \left| {h_i{''} - h_i'} \right|$
     17:      else
     18:       更新$ n = n + 1 $
     19:       ${\rm{if}}\;\;{\rm{de}} < {\rm{Te}}$
     20:        提前终止该点修正,即${\rm{Is}}\_{\rm{ite}} = 1$
     21:       ${\rm{if}}\;\;n = {N_j}\;\;{\rm{and}}\;\;{\rm{Is}}\_{\rm{ite}} = 1$
     22:        开始新的一轮修正,即$ n = 1 $, ${\rm{Is}}\_{\rm{ite}} = 0$
     23:  (ii) 输出${\rm{P} }'' = \left\{ { {p_i}\left( { {a_i},y_i'',h_i'' } \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_{ {\rm{total} } } } } \right\}$
     24:  (iii) 更新${\rm{P}}' = {\rm{P}}''$,返回步骤2
     输出:点云${\rm{P}}' = \left\{ { {p_i}\left( { {a_i},{r_i},h_i'} \right)|{a_i} \in \left( { {A_1},{A_2}, \cdots ,{A_J} } \right),i = 1,2, \cdots ,{N_{{\rm{total}}} } } \right\}$
    下载: 导出CSV

    表  2  仿真结果精度(m)

    Table  2.   Precision of the simulated results (m)

    数据原始点云LSMLS本文方法
    数据13.672.842.201.04
    数据23.114.714.462.36
    数据32.504.152.180.90
    数据42.743.792.951.10
    下载: 导出CSV

    表  3  主要实验参数

    Table  3.   Main experimental parameters

    参数数值
    频段X
    飞行高度3.5 km
    带宽500 MHz
    基线长度2.0 m
    基线间隔0.2 m
    基线水平夹角
    中心下视角35°
    下载: 导出CSV
  • [1] KÖNINGER A and BARTEL S. 3D-GIS for urban purposes[J]. Geoinformatica, 1998, 2(1): 79–103. doi: 10.1023/A:1009797106866
    [2] WANG Yuanyuan and ZHU Xiaoxiang. Automatic feature-based geometric fusion of Multiview TomoSAR point clouds in urban area[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 953–965. doi: 10.1109/JSTARS.2014.2361430
    [3] MINH D H T, LE TOAN T, ROCCA F, et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana[J]. Remote Sensing of Environment, 2016, 175: 138–147. doi: 10.1016/j.rse.2015.12.037
    [4] EL IDRISSI ESSEBTEY S, VILLARD L, BORDERIES P, et al. Long-term trends of P-band temporal decorrelation over a tropical dense forest-experimental results for the BIOMASS mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5102415. doi: 10.1109/TGRS.2021.3082395
    [5] LI Mofan, XIANG Yin, CHEN Xinliang, et al. Altitude ambiguity suppression method based on dual-frequency interfering and multi-frequency averaging for sparse baseline TomoSAR[J]. Electronics Letters, 2019, 55(22): 1194–1196. doi: 10.1049/el.2019.2198
    [6] GUO Jiao, LI Zhenfang, and BAO Zheng. Using multibaseline InSAR to recover layovered terrain considering wideband array problem[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 583–587. doi: 10.1109/LGRS.2008.2000623
    [7] ZHU Xiaoxiang and SHAHZAD M. Facade reconstruction using Multiview spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. doi: 10.1109/TGRS.2013.2273619
    [8] ZHANG Fubo, LIANG Xingdong, WU Yirong, et al. 3D surface reconstruction of layover areas in continuous terrain for multi-baseline SAR interferometry using a curve model[J]. International Journal of Remote Sensing, 2015, 36(8): 2093–2112. doi: 10.1080/01431161.2015.1030042
    [9] 张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015.

    ZHANG Fubo. Research on signal processing of 3-D reconstruction in linear array synthetic aperture radar interferometry[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2015.
    [10] LI Xiaowan, ZHANG Fubo, LI Yanlei, et al. An elevation ambiguity resolution method based on segmentation and reorganization of TomoSAR point cloud in 3D mountain reconstruction[J]. Remote Sensing, 2021, 13(24): 5118. doi: 10.3390/rs13245118
    [11] FISCHLER M A and BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395. doi: 10.1145/358669.358692
    [12] D’HONDT O, GUILLASO S, and HELLWICH O. Geometric primitive extraction for 3D reconstruction of urban areas from tomographic SAR data[C]. Joint Urban Remote Sensing Event 2013, Sao Paulo, Brazil, 2013: 206–209.
    [13] SHAHZAD M and ZHU Xiaoxiang. Robust reconstruction of building facades for large areas using spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 752–769. doi: 10.1109/TGRS.2014.2327391
    [14] SHAHZAD M and ZHU Xiaoxiang. Reconstructing 2-D/3-D building shapes from Spaceborne tomographic synthetic aperture radar data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, XL-3: 313–320. doi: 10.5194/isprsarchives-XL-3-313-2014
    [15] ZHOU Siyan, LI Yanlei, ZHANG Fubo, et al. Automatic regularization of TomoSAR point clouds for buildings using neural networks[J]. Sensors, 2019, 19(17): 3748. doi: 10.3390/s19173748
    [16] AVRON H, SHARF A, GREIF C, et al. ℓ1-sparse reconstruction of sharp point set surfaces[J]. ACM Transactions on Graphics, 2010, 29(5): 135. doi: 10.1145/1857907.1857911
    [17] FU Yan and ZHAI Jinlei. Research on scattered points cloud denoising algorithm[C]. 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 2015: 1–5.
    [18] GU Xiaoying, LIU Yongshan, and WU Qiong. A filtering algorithm for scattered point cloud based on curvature features classification[J]. Journal of Information and Computational Science, 2015, 12(2): 525–532. doi: 10.12733/jics20105244
    [19] DIGNE J and DE FRANCHIS C. The bilateral filter for point clouds[J]. Image Processing on Line, 2017, 7: 278–287. doi: 10.5201/ipol.2017.179
    [20] ZENG Jin, CHEUNG G, NG M, et al. 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model[J]. IEEE Transactions on Image Processing, 2020, 29: 3474–3489. doi: 10.1109/TIP.2019.2961429
    [21] GERNHARDT S, ADAM N, EINEDER M, et al. Potential of very high resolution SAR for persistent scatterer interferometry in urban areas[J]. Annals of GIS, 2010, 16(2): 103–111. doi: 10.1080/19475683.2010.492126
    [22] NEALEN A. An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation[R/OL]. http://www.nealen.com/projects, 2004.
    [23] LEVIN D. The approximation power of moving least-squares[J]. Mathematics of Computation, 1998, 67(224): 1517–1531. doi: 10.1090/S0025-5718-98-00974-0
    [24] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
    [25] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. Three-dimensional SAR focusing from multipass signals using compressive sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 488–499. doi: 10.1109/TGRS.2010.2054099
    [26] 孙婷. 基于移动最小二乘近似权函数的选取及其应用[D]. [硕士论文], 苏州大学, 2010.

    SUN Ting. Selection and application of weight function based on MLS[D]. [Master dissertation], Soochow University, 2010.
    [27] 曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004, 25(1): 84–89. doi: 10.3969/j.issn.1003-0158.2004.01.017

    ZENG Qinghong and LU Detang. Curve and surface fitting based on moving least-squares methods[J]. Journal of Engineering Graphics, 2004, 25(1): 84–89. doi: 10.3969/j.issn.1003-0158.2004.01.017
    [28] AUER S. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universität München, 2011.
    [29] 生强强. InSAR DEM精度分析与定量评估方法[D]. [硕士论文], 西安电子科技大学, 2018.

    SHENG Qiangqiang. InSAR DEM accuracy analysis and quantitative evaluation[D]. [Master dissertation], Xidian University, 2018.
    [30] TAKAKU J, TADONO T, DOUTSU M, et al. Updates of ‘AW3D30’ Alos global digital surface model with other open access datasets[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, XLIII-B4-2020: 183–189. doi: 10.5194/isprs-archives-XLIII-B4-2020-183-2020
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1475
  • HTML全文浏览量:  688
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 修回日期:  2022-05-10
  • 网络出版日期:  2022-05-17
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回