空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法

高永婵 潘丽燕 李亚超 左磊

高永婵, 潘丽燕, 李亚超, 等. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法[J]. 雷达学报, 2022, 11(5): 765–777. doi: 10.12000/JR22013
引用本文: 高永婵, 潘丽燕, 李亚超, 等. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法[J]. 雷达学报, 2022, 11(5): 765–777. doi: 10.12000/JR22013
GAO Yongchan, PAN Liyan, LI Yachao, et al. Multi-rank range-spread target detection method for space/time symmetric array radar under non-Gaussian clutter background[J]. Journal of Radars, 2022, 11(5): 765–777. doi: 10.12000/JR22013
Citation: GAO Yongchan, PAN Liyan, LI Yachao, et al. Multi-rank range-spread target detection method for space/time symmetric array radar under non-Gaussian clutter background[J]. Journal of Radars, 2022, 11(5): 765–777. doi: 10.12000/JR22013

空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法

DOI: 10.12000/JR22013
基金项目: 国家自然科学基金(61701370, 61871307, 61971432),中国博士后科学基金(2019M653561, 2020T130493)
详细信息
    作者简介:

    高永婵,教授,博士生导师,研究方向为阵列信号处理、空时自适应信号处理、新体制雷达目标检测与参数估计等

    潘丽燕,硕士生,研究方向为阵列信号处理、雷达自适应目标检测等

    李亚超,教授,博士生导师,研究方向为雷达探测与成像、精导对抗等

    左 磊,副教授,博士生导师,研究方向为雷达协同探测、雷达对抗等

    通讯作者:

    高永婵 ycgao@xidian.edu.cn

    潘丽燕 lypan@stu.xidian.edu.cn

  • 责任主编:郝程鹏 Corresponding Editor: HAO Chengpeng
  • 中图分类号: TN957.51

Multi-rank Range-spread Target Detection Method for Space/Time Symmetric Array Radar under Non-Gaussian Clutter Background

Funds: The National Natural Science Foundation of China (61701370, 61871307, 61971432), China Postdoctoral Science Foundation under Grant (2019M653561, 2020T130493)
More Information
  • 摘要: 针对多通道阵列雷达从实际杂波中检测目标场景,该文提出了一种面向多通道阵列雷达非高斯杂波背景的多秩距离扩展目标检测方法。首先,利用秩大于1的子空间矩阵和相应距离单元的坐标向量,建立了多秩距离扩展目标模型;然后,利用雷达接收单元空间或时间中心对称探测场景下杂波协方差矩阵的反对称结构信息,通过酉变换,采取广义似然比、Rao、Wald检验准则,构建待解参数小样本估计策略,设计了面向非高斯杂波背景的多秩距离扩展目标检测方法。最后,通过理论推导证明了所提检测方法相对于杂波协方差矩阵具有恒虚警特性。基于仿真数据和实测数据的实验结果表明,所提检测方法能够保证对杂波协方差矩阵具有恒虚警特性,此外,相较于现有检测方法,所提检测方法提升了小训练支持的目标检测性能,并且在导向矢量失配条件下,有效地改善目标检测的稳健性。

     

  • 图  1  本文所提检测器的CFAR特性曲线

    Figure  1.  CFAR property curves of the proposed detectors

    图  2  基于仿真数据的检测概率曲线

    Figure  2.  Detection probability curves based on the simulated data

    图  3  不同失配程度下基于仿真数据的检测概率曲线

    Figure  3.  Detection probability curves of the detectors for different mismatch levels based on the simulated data

    图  4  实测雷达对海探测数据

    Figure  4.  Real sea-detecting radar data

    图  5  基于实测数据的检测概率曲线

    Figure  5.  Detection probability curves based on the real data

    图  6  不同失配程度下基于实测数据的检测概率曲线

    Figure  6.  Detection probability curves of the detectors for different mismatch levels based on the real data

  • [1] 韩金旺, 张子敬, 刘军, 等. 基于贝叶斯的高斯杂波背景下MIMO雷达自适应检测算法[J]. 雷达学报, 2019, 8(4): 501–509. doi: 10.12000/JR18090

    HAN Jinwang, ZHANG Zijing, LIU Jun, et al. Adaptive Bayesian detection for MIMO radar in Gaussian clutter[J]. Journal of Radars, 2019, 8(4): 501–509. doi: 10.12000/JR18090
    [2] 王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081

    WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081
    [3] DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
    [4] PASCAL F, CHITOUR Y, OVARLEZ J P, et al. Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 34–48. doi: 10.1109/TSP.2007.901652
    [5] 许述文, 石星宇, 水鹏朗. 复合高斯杂波下抑制失配信号的自适应检测器[J]. 雷达学报, 2019, 8(3): 326–334. doi: 10.12000/JR19030

    XU Shuwen, SHI Xingyu, and SHUI Penglang. An adaptive detector with mismatched signals rejection in compound Gaussian clutter[J]. Journal of Radars, 2019, 8(3): 326–334. doi: 10.12000/JR19030
    [6] GRECO M, GINI F, and RANGASWAMY M. Statistical analysis of measured polarimetric clutter data at different range resolutions[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(6): 473–481. doi: 10.1049/ip-rsn:20060045
    [7] SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621
    [8] HE You, JIAN Tao, SU Feng, et al. Adaptive detection application of covariance matrix estimator for correlated non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2108–2117. doi: 10.1109/TAES.2010.5595620
    [9] CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910
    [10] STINCO P, GRECO M, and GINI F. Adaptive detection in compound-Gaussian clutter with inverse-gamma texture[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011.
    [11] LI Na, CUI Guolong, KONG Lingjiang, et al. Rao and Wald tests design of multiple-input multiple-output radar in compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 729–738. doi: 10.1049/iet-rsn.2011.0376
    [12] LIU Weijian, LIU Jun, HUANG Lei, et al. Performance analysis of reduced-dimension subspace signal filtering and detection in sample-starved environment[J]. Journal of the Franklin Institute, 2019, 356(1): 629–653. doi: 10.1016/j.jfranklin.2018.10.017
    [13] YAN Linjie, HAO Chengpeng, ORLANDO D, et al. Parametric space-time detection and range estimation of point-like targets in partially homogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1228–1242. doi: 10.1109/TAES.2019.2928672
    [14] 顾新锋, 简涛, 何友, 等. 局部均匀背景中距离扩展目标的GLRT检测器及性能分析[J]. 电子学报, 2013, 41(12): 2367–2373. doi: 10.3969/j.issn.0372-2112.2013.12.008

    GU Xinfeng, JIAN Tao, HE You, et al. GLRT detector of range-spread target in local homogeneous background and its performance analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2367–2373. doi: 10.3969/j.issn.0372-2112.2013.12.008
    [15] 何友, 简涛, 苏峰, 等. 非高斯杂波协方差矩阵估计方法及CFAR特性分析[J]. 中国科学:信息科学, 2011, 41(1): 90–99.

    HE You, JIAN Tao, SU Feng, et al. CFAR assessment of covariance matrix estimators for non-Gaussian clutter[J]. Science in China:Information Sciences, 2011, 41(1): 90–99.
    [16] GAO Yongchan, LI Hongbin, and HIMED B. Adaptive subspace tests for multichannel signal detection in auto-regressive disturbance[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5577–5587. doi: 10.1109/TSP.2018.2869123
    [17] XU D, ADDABBO P, HAO C, et al. Adaptive strategies for clutter edge detection in radar[J]. Signal Processing, 2021, 186: 108127. doi: 10.1016/j.sigpro.2021.108127
    [18] CAROTENUTO V, DE MAIO A, ORLANDO D, et al. Adaptive radar detection using two sets of training data[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1791–1801. doi: 10.1109/TSP.2017.2778684
    [19] LIU Weijian, ZHANG Zhaojian, LIU Jun, et al. Detection of a rank-one signal with limited training data[J]. Signal Processing, 2021, 186: 108120. doi: 10.1016/j.sigpro.2021.108120
    [20] CONTE E, DE MAIO A, and RICCI G. CFAR detection of distributed targets in non-Gaussian disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 612–621. doi: 10.1109/TAES.2002.1008990
    [21] CONTE E and DE MAIO A. Distributed target detection in compound-Gaussian noise with Rao and Wald tests[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 568–582. doi: 10.1109/TAES.2003.1207267
    [22] 简涛, 何友, 苏峰, 等. 非高斯背景下基于动态阈值的距离扩展目标检测器[J]. 电子学报, 2011, 39(1): 59–63.

    JIAN Tao, HE You, SU Feng, et al. Range-Spread target detector with dynamic threshold for non-Gaussian clutter[J]. Acta Electronica Sinica, 2011, 39(1): 59–63.
    [23] HE You, JIAN Tao, SU Feng, et al. Novel range-spread target detectors in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1312–1328. doi: 10.1109/TAES.2010.5545191
    [24] COLUCCIA A, FASCISTA A, and RICCI G. A novel approach to robust radar detection of range-spread targets[J]. Signal Processing, 2020, 166: 107223. doi: 10.1016/j.sigpro.2019.07.016
    [25] XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture[J]. Digital Signal Processing, 2016, 56: 132–139. doi: 10.1016/j.dsp.2016.06.009
    [26] XUE Jian, XU Shuwen, and SHUI Penglang. Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture[J]. Signal Processing, 2020, 166: 107236. doi: 10.1016/j.sigpro.2019.07.029
    [27] LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8
    [28] SHI Bo, HAO Chengpeng, HOU Chaohuan, et al. Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous environments[J]. Signal Processing, 2015, 108: 421–429. doi: 10.1016/j.sigpro.2014.10.007
    [29] 刘维建, 王利才, 狄源水, 等. 自适应能量检测器及在失配信号检测中的应用[J]. 雷达学报, 2015, 4(2): 149–159. doi: 10.12000/JR14132

    LIU Weijian, WANG Licai, DI Yuanshui, et al. Adaptive energy detector and its application for mismatched signal detection[J]. Journal of Radars, 2015, 4(2): 149–159. doi: 10.12000/JR14132
    [30] WANG Zhihang, HE Zishu, HE Qin, et al. Adaptive CFAR detectors for mismatched signal in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3502705. doi: 10.1109/LGRS.2020.3047390
    [31] LIU Weijian, LIU Jun, GAO Yongchan, et al. Multichannel signal detection in interference and noise when signal mismatch happens[J]. Signal Processing, 2020, 166: 107268. doi: 10.1016/j.sigpro.2019.107268
    [32] LIU Weijian, LIU Jun, LI Hai, et al. Multichannel signal detection based on Wald test in subspace interference and Gaussian noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1370–1381. doi: 10.1109/TAES.2018.2870445
    [33] GAO Yongchan, JI Hongbing, and LIU Weijian. Persymmetric adaptive subspace detectors for range-spread targets[J]. Digital Signal Processing, 2019, 89: 116–123. doi: 10.1016/j.dsp.2019.03.007
    [34] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
    [35] NITZBERG R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 124–127. doi: 10.1109/TAES.1980.308887
    [36] 丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi: 10.12000/JR14133

    DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal of Radars, 2015, 4(4): 418–430. doi: 10.12000/JR14133
    [37] LIU Jun, ORLANDO D, ADDABBO P, et al. SINR distribution for the persymmetric SMI beamformer with steering vector mismatches[J]. IEEE Transactions on Signal Processing, 2019, 67(5): 1382–1392. doi: 10.1109/TSP.2019.2892027
    [38] 闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 2021, 10(3): 443–452. doi: 10.12000/JR20140

    YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, 2021, 10(3): 443–452. doi: 10.12000/JR20140
    [39] LIU Jun, LIU Weijian, CHEN Bo, et al. Modified Rao test for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 714–725. doi: 10.1109/TSP.2015.2491892
    [40] GERLACH K. Spatially distributed target detection in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 926–934. doi: 10.1109/7.784062
  • 加载中
图(6)
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  633
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回