[1] |
韩金旺, 张子敬, 刘军, 等. 基于贝叶斯的高斯杂波背景下MIMO雷达自适应检测算法[J]. 雷达学报, 2019, 8(4): 501–509. doi: 10.12000/JR18090HAN Jinwang, ZHANG Zijing, LIU Jun, et al. Adaptive Bayesian detection for MIMO radar in Gaussian clutter[J]. Journal of Radars, 2019, 8(4): 501–509. doi: 10.12000/JR18090
|
[2] |
王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081
|
[3] |
DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
|
[4] |
PASCAL F, CHITOUR Y, OVARLEZ J P, et al. Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 34–48. doi: 10.1109/TSP.2007.901652
|
[5] |
许述文, 石星宇, 水鹏朗. 复合高斯杂波下抑制失配信号的自适应检测器[J]. 雷达学报, 2019, 8(3): 326–334. doi: 10.12000/JR19030XU Shuwen, SHI Xingyu, and SHUI Penglang. An adaptive detector with mismatched signals rejection in compound Gaussian clutter[J]. Journal of Radars, 2019, 8(3): 326–334. doi: 10.12000/JR19030
|
[6] |
GRECO M, GINI F, and RANGASWAMY M. Statistical analysis of measured polarimetric clutter data at different range resolutions[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(6): 473–481. doi: 10.1049/ip-rsn:20060045
|
[7] |
SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621
|
[8] |
HE You, JIAN Tao, SU Feng, et al. Adaptive detection application of covariance matrix estimator for correlated non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2108–2117. doi: 10.1109/TAES.2010.5595620
|
[9] |
CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910
|
[10] |
STINCO P, GRECO M, and GINI F. Adaptive detection in compound-Gaussian clutter with inverse-gamma texture[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011.
|
[11] |
LI Na, CUI Guolong, KONG Lingjiang, et al. Rao and Wald tests design of multiple-input multiple-output radar in compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 729–738. doi: 10.1049/iet-rsn.2011.0376
|
[12] |
LIU Weijian, LIU Jun, HUANG Lei, et al. Performance analysis of reduced-dimension subspace signal filtering and detection in sample-starved environment[J]. Journal of the Franklin Institute, 2019, 356(1): 629–653. doi: 10.1016/j.jfranklin.2018.10.017
|
[13] |
YAN Linjie, HAO Chengpeng, ORLANDO D, et al. Parametric space-time detection and range estimation of point-like targets in partially homogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1228–1242. doi: 10.1109/TAES.2019.2928672
|
[14] |
顾新锋, 简涛, 何友, 等. 局部均匀背景中距离扩展目标的GLRT检测器及性能分析[J]. 电子学报, 2013, 41(12): 2367–2373. doi: 10.3969/j.issn.0372-2112.2013.12.008GU Xinfeng, JIAN Tao, HE You, et al. GLRT detector of range-spread target in local homogeneous background and its performance analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2367–2373. doi: 10.3969/j.issn.0372-2112.2013.12.008
|
[15] |
何友, 简涛, 苏峰, 等. 非高斯杂波协方差矩阵估计方法及CFAR特性分析[J]. 中国科学:信息科学, 2011, 41(1): 90–99.HE You, JIAN Tao, SU Feng, et al. CFAR assessment of covariance matrix estimators for non-Gaussian clutter[J]. Science in China:Information Sciences, 2011, 41(1): 90–99.
|
[16] |
GAO Yongchan, LI Hongbin, and HIMED B. Adaptive subspace tests for multichannel signal detection in auto-regressive disturbance[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5577–5587. doi: 10.1109/TSP.2018.2869123
|
[17] |
XU D, ADDABBO P, HAO C, et al. Adaptive strategies for clutter edge detection in radar[J]. Signal Processing, 2021, 186: 108127. doi: 10.1016/j.sigpro.2021.108127
|
[18] |
CAROTENUTO V, DE MAIO A, ORLANDO D, et al. Adaptive radar detection using two sets of training data[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1791–1801. doi: 10.1109/TSP.2017.2778684
|
[19] |
LIU Weijian, ZHANG Zhaojian, LIU Jun, et al. Detection of a rank-one signal with limited training data[J]. Signal Processing, 2021, 186: 108120. doi: 10.1016/j.sigpro.2021.108120
|
[20] |
CONTE E, DE MAIO A, and RICCI G. CFAR detection of distributed targets in non-Gaussian disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 612–621. doi: 10.1109/TAES.2002.1008990
|
[21] |
CONTE E and DE MAIO A. Distributed target detection in compound-Gaussian noise with Rao and Wald tests[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 568–582. doi: 10.1109/TAES.2003.1207267
|
[22] |
简涛, 何友, 苏峰, 等. 非高斯背景下基于动态阈值的距离扩展目标检测器[J]. 电子学报, 2011, 39(1): 59–63.JIAN Tao, HE You, SU Feng, et al. Range-Spread target detector with dynamic threshold for non-Gaussian clutter[J]. Acta Electronica Sinica, 2011, 39(1): 59–63.
|
[23] |
HE You, JIAN Tao, SU Feng, et al. Novel range-spread target detectors in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1312–1328. doi: 10.1109/TAES.2010.5545191
|
[24] |
COLUCCIA A, FASCISTA A, and RICCI G. A novel approach to robust radar detection of range-spread targets[J]. Signal Processing, 2020, 166: 107223. doi: 10.1016/j.sigpro.2019.07.016
|
[25] |
XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture[J]. Digital Signal Processing, 2016, 56: 132–139. doi: 10.1016/j.dsp.2016.06.009
|
[26] |
XUE Jian, XU Shuwen, and SHUI Penglang. Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture[J]. Signal Processing, 2020, 166: 107236. doi: 10.1016/j.sigpro.2019.07.029
|
[27] |
LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8
|
[28] |
SHI Bo, HAO Chengpeng, HOU Chaohuan, et al. Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous environments[J]. Signal Processing, 2015, 108: 421–429. doi: 10.1016/j.sigpro.2014.10.007
|
[29] |
刘维建, 王利才, 狄源水, 等. 自适应能量检测器及在失配信号检测中的应用[J]. 雷达学报, 2015, 4(2): 149–159. doi: 10.12000/JR14132LIU Weijian, WANG Licai, DI Yuanshui, et al. Adaptive energy detector and its application for mismatched signal detection[J]. Journal of Radars, 2015, 4(2): 149–159. doi: 10.12000/JR14132
|
[30] |
WANG Zhihang, HE Zishu, HE Qin, et al. Adaptive CFAR detectors for mismatched signal in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3502705. doi: 10.1109/LGRS.2020.3047390
|
[31] |
LIU Weijian, LIU Jun, GAO Yongchan, et al. Multichannel signal detection in interference and noise when signal mismatch happens[J]. Signal Processing, 2020, 166: 107268. doi: 10.1016/j.sigpro.2019.107268
|
[32] |
LIU Weijian, LIU Jun, LI Hai, et al. Multichannel signal detection based on Wald test in subspace interference and Gaussian noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1370–1381. doi: 10.1109/TAES.2018.2870445
|
[33] |
GAO Yongchan, JI Hongbing, and LIU Weijian. Persymmetric adaptive subspace detectors for range-spread targets[J]. Digital Signal Processing, 2019, 89: 116–123. doi: 10.1016/j.dsp.2019.03.007
|
[34] |
REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
|
[35] |
NITZBERG R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 124–127. doi: 10.1109/TAES.1980.308887
|
[36] |
丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi: 10.12000/JR14133DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal of Radars, 2015, 4(4): 418–430. doi: 10.12000/JR14133
|
[37] |
LIU Jun, ORLANDO D, ADDABBO P, et al. SINR distribution for the persymmetric SMI beamformer with steering vector mismatches[J]. IEEE Transactions on Signal Processing, 2019, 67(5): 1382–1392. doi: 10.1109/TSP.2019.2892027
|
[38] |
闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 2021, 10(3): 443–452. doi: 10.12000/JR20140YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, 2021, 10(3): 443–452. doi: 10.12000/JR20140
|
[39] |
LIU Jun, LIU Weijian, CHEN Bo, et al. Modified Rao test for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 714–725. doi: 10.1109/TSP.2015.2491892
|
[40] |
GERLACH K. Spatially distributed target detection in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 926–934. doi: 10.1109/7.784062
|