See-Earth:高频时序多维地球环境监测SAR星座

王樱洁 王宇 禹卫东 赵庆超 刘开雨 刘大成 邓云凯 欧乃铭 贾小雪 张衡 赵鹏飞 王伟 余伟 葛大庆 唐新明 李涛

王樱洁, 王宇, 禹卫东, 等. See-Earth:高频时序多维地球环境监测SAR星座[J]. 雷达学报, 2021, 10(6): 842–864. doi: 10.12000/JR21176
引用本文: 王樱洁, 王宇, 禹卫东, 等. See-Earth:高频时序多维地球环境监测SAR星座[J]. 雷达学报, 2021, 10(6): 842–864. doi: 10.12000/JR21176
WANG Yingjie, WANG Robert, YU Weidong, et al. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars, 2021, 10(6): 842–864. doi: 10.12000/JR21176
Citation: WANG Yingjie, WANG Robert, YU Weidong, et al. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars, 2021, 10(6): 842–864. doi: 10.12000/JR21176

See-Earth:高频时序多维地球环境监测SAR星座

DOI: 10.12000/JR21176
基金项目: 国家自然科学基金(61825106)
详细信息
    作者简介:

    王樱洁(1992–),女,河南邓州人,博士,助理研究员。主要从事星载合成孔径雷达干涉系统设计、时序干涉SAR技术应用等研究工作

    王 宇(1980–),男,河南汝南人,中科院特聘研究员、博士生导师。主要从事星载成像雷达系统与信号处理研究工作

    禹卫东(1969–),男,河南巩义人,中科院特聘研究员、博士生导师。长期从事机载、星载合成孔径雷达系统设计和研制工作

    赵庆超(1987–),男,山东德州人,博士,助理研究员。主要从事星载合成孔径雷达系统设计、数字波束形成技术等研究工作

    刘开雨(1981–),男,山东枣庄人,硕士生导师,副研究员。主要从事星载合成孔径雷达系统研制、中央电子设备技术等研究工作

    刘大成(1990–),男,云南大理人,助理研究员。主要从事星载合成孔径雷达系统设计工作、双基SAR同步技术研究等研究工作

    邓云凯(1962–),男,湖北荆门人,中科院特聘研究员、博士生导师。长期从事星载成像雷达系统设计、成像基础理论及微波遥感理论研究工作

    欧乃铭(1986–),男,山西芮城人,副研究员、硕士生导师。主要从事有源相控阵天线和计算电磁学研究等研究工作

    贾小雪(1982–),女,吉林长春人,副研究员。主要从事星载成像处理、轨道设计与仿真等研究工作

    张 衡(1990–),男,山东滕州人,副研究员。主要从事多基星载SAR信号处理、系统设计、多基线干涉SAR信号处理等研究工作

    赵鹏飞(1993–),男,江苏扬州人,博士后。主要从事星载极化SAR系统设计新体制SAR系统模糊抑制研究,及极化数据处理等研究工作

    王 伟(1985–),男,河北邯郸人,副研究员、硕士生导师。主要从事星载合成孔径雷达系统设计、数字阵列处理,波形编码与优化等研究工作

    余 伟(1982–),男,江苏仪征人,硕士研究生,高级工程师,主要从事星载相控阵天线系统架构设计等研究工作

    葛大庆(1979–),男,陕西永寿人,教授级高级工程师,主要从事雷达干涉测量(InSAR)技术研究与地表形变监测应用等研究工作

    唐新明(1966–),男,江苏南通人,自然资源部国土卫星遥感应用中心总工,研究员,主要从事卫星遥感测绘等研究工作

    李 涛(1986–),男,山东聊城人,博士研究生,副研究员,主要从事SAR卫星地形测绘及形变监测等研究工作

    通讯作者:

    王宇 yuwang@mail.ie.ac.cn

    禹卫东 ywd@mail.ie.ac.cn

  • 责任主编:陈杰 Corresponding Editor: CHEN Jie
  • 品质因数定义为测绘幅宽(km)/分辨率(m)。
  • 此模式可提供方位向1 m分辨率,但是受限于系统带宽,距离向分辨率约3 m。
  • 中图分类号: TN957.52

See-Earth: SAR Constellation with Dense Time-SEries for Multi-dimensional Environmental Monitoring of the Earth

Funds: The National Natural Science Foundation of China (61825106)
More Information
  • 摘要: 我国星载合成孔径雷达(SAR)面临着卫星通用性、应用维度与深度以及广域观测效能等局限性,缺少面向全球并实现长期、稳定、高性能环境动态监测的卫星系统。随着国际环境日趋复杂,我国亟需发展面向全球动态环境监测的SAR卫星系统,实现大范围、高重访、长期、稳定、高精度的对地观测。该文提出一个高频时序多维地球环境监测SAR星座(简称See-Earth)计划,从系统构想、技术体制、性能分析、应用潜力以及新体制扩展几方面来进行探讨。

     

  • 图  1  See-Earth概念示意图

    Figure  1.  Schematic diagram of the See-Earth plan

    图  2  See-Earth观测模式示意图

    Figure  2.  Schematic diagram of the See-Earth observation mode

    图  3  SAR载荷系统组成框图

    Figure  3.  The composition block diagram of SAR system

    图  4  See-Earth数据处理流程

    Figure  4.  See-Earth data processing flow

    图  5  天线子板构型图

    Figure  5.  The configuration diagram of the antenna sub-board

    图  6  天线子系统拓扑结构

    Figure  6.  The antenna subsystem topology

    图  7  See-Earth在轨工作示意图

    Figure  7.  The schematic diagram of See-Earth on-orbit working

    图  8  方位多通道系统信号收发示意图

    Figure  8.  Schematic diagram for the signal transmission and reception of the azimuth multi-channel system

    图  9  方位向多通道系统的等效相位中心与信号采样情况

    Figure  9.  The equivalent phase center and signal sampling situation of the azimuth multi-channel system

    图  10  方位多通道数据重建后成像结果

    Figure  10.  The imaging results after azimuth multi-channel reconstruction

    图  11  DBF SAR系统概念图

    Figure  11.  Conceptual diagram of the DBF SAR system

    图  12  单点目标回波的扫描接收示意图

    Figure  12.  Schematic diagram for the echo scanning and receiving of a single-point target

    图  13  DSBF处理器单点目标回波的扫描接收示意图

    Figure  13.  Schematic diagram for the echo scanning and receiving of a single-point target using the DSBF processor

    图  14  DBF处理所需乘法次数随俯仰向通道数的变化[11]

    Figure  14.  The number of multiplications required for the DBF processing varies with the number of channels in elevation[11]

    图  15  机载DBF SAR数据成像结果

    Figure  15.  The imaging results of airborne DBF SAR data

    图  16  传统线全极化SAR系统时序图

    Figure  16.  The timing diagram of conventional quadrature polarimetric SAR system

    图  17  混合全极化SAR系统时序图(左右旋圆极化)

    Figure  17.  The timing diagram of hybrid quadrature polarimetric SAR system (left and right circular polarization)

    图  18  混合简缩极化SAR系统时序图(右旋圆极化发射)

    Figure  18.  The timing diagram of hybrid compact polarimetric SAR system (right circular polarization transmission)

    图  19  不同极化方式分类结果对比

    Figure  19.  Classification results of different polarization modes

    图  20  天线方向图赋型优化原理

    Figure  20.  Optimization principle of the antenna pattern shaping

    图  21  天线方向图赋型优化结果

    Figure  21.  Optimization results of the antenna pattern shaping

    图  22  LT-1优化前后有效观测范围对比

    Figure  22.  Comparison of the effective observation range before and after LT-1 optimization

    图  23  方位向三通道混合全极化SAR系统的等效相位中心示意图

    Figure  23.  Schematic diagram of the equivalent phase center of the azimuth three-channel hybrid four-polarized SAR system

    图  24  重建方法性能对比

    Figure  24.  Performance comparison of the reconstruction methods

    图  25  1 m/120 km模式波位图

    Figure  25.  Timing diagram of the 1 m/120 km mode

    图  26  系统性能仿真结果

    Figure  26.  Simulation results of the system performance

    图  27  See-Earth星座全球平均重访时间

    Figure  27.  The global average revisit time of the See-Earth plan

    图  28  全国中东部地区InSAR监测地面沉降分布(来源:中国自然资源航空物探遥感中心)

    Figure  28.  Land subsidence distribution monitored by InSAR in the central and eastern regions of the China (Source: Aero Geophysical Survey & Remote Sensing Center, Ministry of Land and Resources)

    图  29  Borneo森林Pauli图(上)及生物量估计结果(下) [47]

    Figure  29.  Pauli map of Borneo forest (top) and biomass estimation results (bottom) [47]

    图  30  金沙江白格滑坡监测结果

    Figure  30.  Monitoring results of Baige landslide on the Jinsha River

    图  31  滑坡区域灾后的极化分解伪彩色合成图(2018年10月12日)

    Figure  31.  Pseudo-color composite image of polarization decomposition after the disaster in the landslide area (October 12, 2018)

    图  32  典型目标特征提取

    Figure  32.  The feature extraction of typical targets

    图  33  地球科学应用需求

    Figure  33.  Application requirements of the Earth science

    图  34  TerraSAR-X/TanDEM-X双基成像模式浮冰成像结果[53]

    Figure  34.  The ice floe imaging results of TerraSAR-X/TanDEM-X dual-base imaging mode[53]

    表  1  See-Earth主要系统指标

    Table  1.   Main system indicators of the See-Earth plan

    指标取值
    轨道高度1100 km
    回归周期2天(单星8天)
    星座卫星数4颗
    频段L波段
    主要工作模式1 m/120 km(单极化/简缩极化)
    3 m/300 km(单极化/简缩极化)
    3 m/150 km(全极化)
    10 m/1000 km(单极化/简缩极化)
    10 m/500 km(全极化)
    天线重量510 kg
    中央电子设备重量80 kg
    载荷总重量≤830 kg
    功耗<13500 W
    占空比约13%
    数据率<12 Gbps
    下载: 导出CSV

    表  2  天线主要参数

    Table  2.   Main parameters of the antenna

    参数取值
    中心频率1.257 GHz
    工作带宽最大84 MHz (应急可拓展300 MHz)
    通道数8(方位向)×8(距离向)
    天线尺寸13.6 m(方位向)×4.4 m(距离向)
    单位面积重量约8.5 kg/m²
    波束扫描范围距离向±20º
    波束宽度方位向: 0.90°;距离向: 2.76°
    下载: 导出CSV

    表  3  See-Earth卫星轨道参数

    Table  3.   Orbit parameters of the See-Earth satellite

    参数取值
    轨道类型太阳同步轨道
    轨道倾角98°
    轨道偏心率0
    近地点倾角90°
    轨道半长轴7489 km
    升交点时间6:00 AM,晨昏成像
    平近点角0°/90°/180°/270°
    下载: 导出CSV

    表  4  各工作模式性能

    Table  4.   Performance of each operation mode

    工作模式性能指标仿真结果
    1 m/120 km
    单极化/简缩极化
    最差NESZ–29.98 dB
    最差AASR–22.02 dB
    最差RASR–21.22 dB
    最大数据率5.23 Gbps(单极化)
    10.46 Gbps(简缩极化)
    3 m/300 km
    单极化/简缩极化
    最差NESZ–29.87 dB
    最差AASR–21.10 dB
    最差RASR–22.01 dB
    最大数据率5.52 Gbps(单极化)
    11.04 Gbps(简缩极化)
    3 m/150 km
    全极化
    最差NESZ–28.96 dB
    最差AASR–21.12 dB
    最差RASR–22.36 dB(同极化)
    –16.36 dB(交叉极化)
    最大数据率10.84 Gbps
    10 m/1000 km
    单极化/简缩极化
    最差NESZ–32.45 dB
    最差AASR–21.52 dB
    最差RASR–21.28 dB
    最大数据率2.76 Gbps(单极化)
    5.52 Gbps(简缩极化)
    10 m/500 km
    全极化
    最差NESZ–31.46 dB
    最差AASR–21.61 dB
    最差RASR–21.53 dB(同极化)
    –17.21 dB(交叉极化)
    最大数据率5.75 Gbps
    下载: 导出CSV

    表  5  See-Earth观测能力

    Table  5.   See-Earth observation capability

    工作模式:极化/分辨率/幅宽图像重叠率全球覆盖时间 (d)*全国覆盖时间(90%) (h)*局部区域覆盖时间
    1:单极化/简缩极化1 m/120 km>10%12722小时覆盖北京地区
    2:全极化3 m/150 km>10%1060
    3:单极化/简缩极化3 m/300 km>10%5362小时覆盖华北地区
    4: 全极化10 m/500 km>10%424
    5:单极化/简缩极化10 m/1000 km
    >10%24
    *全球覆盖时间:每轨开机时间假定为30 min;全国覆盖时间:同时考虑升降轨覆盖。
    下载: 导出CSV

    表  6  See-Earth产品观测性能

    Table  6.   The observation performance of See-Earth product

    应用潜力应用技术需求See-Earth产品
    高程测量与地表形变监测高频次时序干涉● 高精度DEM数据
    ● 每2天可实现对观测区域的回归
    服务国家重大工程高频次高精度广域观测● 8天覆盖@1 m/120 km
    ● 1天覆盖@10 m/1000 km
    ● 星座平均重访3 h
    自然资源动态监测森林生物量、地物分类● 高精度全极化数据
    ● 观测模式:3 m/150 km全极化,10 m/500 km全极化
    应急管理极化干涉、高频次重访、滑坡形变监测● 间隔2天可获取重复观测干涉数据
    ● 星座平均重访3 h,最快重访时间25 min
    ● 观测模式:3 m/150 km全极化,10 m/500 km全极化
    交通、水利、住建等行业高分辨率动态观测● 星座平均重访3 h,最快重访时间25 min
    ● 观测模式:1 m/120 km
    地球科学形变、生物量、应用全部
    下载: 导出CSV
  • [1] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [2] 杨魁, 杨建兵, 江冰茹. Sentinel-1卫星综述[J]. 城市勘测, 2015(2): 24–27. doi: 10.3969/j.issn.1672-8262.2015.02.006

    YANG Kui, YANG Jianbing, and JIANG Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation &Surveying, 2015(2): 24–27. doi: 10.3969/j.issn.1672-8262.2015.02.006
    [3] MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. doi: 10.1109/MGRS.2015.2437353
    [4] Rosen P. Planned data products and science processing paradigm for the proposed NASA-ISRO SAR mission[J]. Journal of Computational Chemistry, 2014, 5(5): 486–499.
    [5] MOTOHKA T, KANKAKU Y, MIURA S, et al. Alos-4 L-band SAR mission and observation[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5271–5273. doi: 10.1109/IGARSS.2019.8898169.
    [6] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [7] KRIEGER G, GEBERT N, and MOREIRA A. SAR signal reconstruction from non-uniform displaced phase centre sampling[C]. IGARSS 2004-2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1763–1766.
    [8] JING Wei, XING Mengdao, QIU Chengwei, et al. Unambiguous reconstruction and high-resolution imaging for multiple-channel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102–106. doi: 10.1109/LGRS.2008.2008825
    [9] ZHAO Shuo, WANG R, DENG Yunkai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. doi: 10.1109/JSTARS.2015.2421303
    [10] FAN Feng, DANG Hongxing, TAN Xiaomin, et al. An improved scheme of Digital Beam-Forming in elevation for spaceborne SAR[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 1–6.
    [11] WANG Wei, WANG R, DENG Yunkai, et al. An improved processing scheme of digital beam-forming in elevation for reducing resource occupation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 309–313. doi: 10.1109/LGRS.2015.2508098
    [12] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542
    [13] ZHAO Qingchao, ZHANG Yi, WANG Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619–3632. doi: 10.1109/TGRS.2019.2958863
    [14] ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital Beamforming synthetic aperture radar (DBSAR): Experiments and performance analysis in support of 16-channel airborne X-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6784–6798. doi: 10.1109/TGRS.2020.3027691
    [15] WANG R, WANG Wei, SHAO Yunfeng, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842–849. doi: 10.1109/TGRS.2015.2467176
    [16] HOU Wentao, ZHAO Fengjun, LIU Xiuqing, et al. A unified framework for comparing the classification performance between quad-, compact-, and dual-polarimetric SARs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204814. doi: 10.1109/TGRS.2021.3067314
    [17] ZHAO Pengfei, DENG Yunkai, WANG Wei, et al. Ambiguity suppression based on joint optimization for multichannel hybrid and ±π/4 Quad-Pol SAR systems[J]. Remote Sensing, 2021, 13(10): 1907. doi: 10.3390/rs13101907
    [18] LI Peng, ZHAO Fengjun, LIU Dacheng, et al. First demonstration of hybrid Quad-Pol SAR based on P-band airborne experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021: 1–16. doi: 10.1109/TGRS.2021.3084959
    [19] FREEMAN A, JOHNSON W T K, HUNEYCUTT B, et al. The “Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. doi: 10.1109/36.823926
    [20] 邓云凯. 星载高分辨率宽幅SAR成像技术[M]. 北京: 科学出版社, 2020.

    DENG Yunkai. Spaceborne High-Resolution Wide-Swath SAR Imaging Technology[M]. Beijing: Science Press, 2020.
    [21] YOUNIS M, ROMMEL T, BORDONI F, et al. On the pulse extension loss in digital beamforming SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1436–1440. doi: 10.1109/LGRS.2015.2406815
    [22] SUESS M and WIESBECK W. Side-looking synthetic aperture radar system[Z]. Euro Patent EP 1 241 487 A1, 2001.
    [23] PATYUCHENKO A, ROMMEL T, LASKOWSKI P, et al. Digital beam-forming reconfigurable radar system demonstrator[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1541–1544. doi: 10.1109/IGARSS.2012.6351103.
    [24] RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi: 10.1109/TGRS.2011.2157971
    [25] 洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
    [26] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2009.
    [27] RANEY R K, FREEMAN A, and JORDAN R L. Improved range ambiguity performance in Quad-Pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 349–356. doi: 10.1109/TGRS.2011.2121075
    [28] SOUYRIS J C and MINGOT S. Polarimetry based on one transmitting and two receiving polarizations: The π/4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 629–631. doi: 10.1109/IGARSS.2002.1025127.
    [29] SOUYRIS J C, IMBO P, FJORTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486
    [30] OHKI M and SHIMADA M. Large-area land use and land cover classification with quad, compact, and dual polarization SAR data by PALSAR-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5550–5557. doi: 10.1109/TGRS.2018.2819694
    [31] DABBOOR M, MONTPETIT B, and HOWELL S. Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization[J]. Remote Sensing, 2018, 10(4): 594. doi: 10.3390/rs10040594
    [32] RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521
    [33] RANEY R K. Comparing compact and quadrature polarimetric SAR performance[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 861–864. doi: 10.1109/LGRS.2016.2550863
    [34] YANG Ce, OU Naiming, DENG Yunkai, et al. Pattern synthesis algorithm for range ambiguity suppression in the Lt-1 mission via sequential convex optimizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021: 1–13. doi: 10.1109/TGRS.2021.3099132
    [35] ISHIMARU A, KUGA Y, LIU Jun, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz[J]. Radio Science, 1999, 34(1): 257–268. doi: 10.1029/1998RS900021
    [36] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2004: 660.
    [37] BAMLER R and EINEDER M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 151–155. doi: 10.1109/LGRS.2004.843203
    [38] JAKOWATZ C V JR, EICHEL P H, and GHIGLIA D C. Autofocus of SAR imagery degraded by ionospheric-induced phase errors[C]. Proceedings of SPIE 1101, Millimeter Wave and Synthetic Aperture Radar, Orlando, USA, 1989: 46–52. doi: 10.1117/12.960513.
    [39] KNEPP D L and GROVES K M. The effect of ionospheric scintillation on phase gradient autofocus processing of synthetic aperture radar[C]. 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 2013: 1–4. doi: 10.1109/URSIGASS.2011.6050878.
    [40] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [41] FREEMAN A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617–1624. doi: 10.1109/TGRS.2004.830161
    [42] QUEGAN S and LOMAS M R. The impact of system effects on estimates of faraday rotation from synthetic aperture radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4284–4298. doi: 10.1109/TGRS.2015.2395076
    [43] JEHLE M, RUEGG M, ZUBERBUHLER L, et al. Measurement of ionospheric faraday rotation in simulated and real spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1512–1523. doi: 10.1109/TGRS.2008.2004710
    [44] 刘梦. 已同中国签订共建“一带一路”合作文件的国家一览[EB/OL]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm, 2021.

    LIU Meng. List of countries that have signed cooperation documents with China to jointly build the “Belt and Road”[EB/OL]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm, 2021.
    [45] HENDERSON F M and LEWIS A J. Radar detection of wetland ecosystems: A review[J]. International Journal of Remote Sensing, 2008, 29(20): 5809–5835. doi: 10.1080/01431160801958405
    [46] 李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报, 2020, 12(2): 150–158. doi: 10.13878/j.cnki.jnuist.2020.02.002

    LI Zengyuan, ZHAO Lei, LI Kun, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. Journal of Nanjing University of Information Science &Technology, 2020, 12(2): 150–158. doi: 10.13878/j.cnki.jnuist.2020.02.002
    [47] HAYASHI M, MOTOHKA T, and SAWADA Y. Aboveground biomass mapping using ALOS-2/PALSAR-2 time-series images for Borneo's forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5167–5177. doi: 10.1109/JSTARS.2019.2957549
    [48] JIA Hongying, WANG Yingjie, GE Daqing, et al. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247: 111899. doi: 10.1016/j.rse.2020.111899
    [49] 陆萍萍, 杜康宁, 禹卫东, 等. 基于特征融合的HJ-1-C SAR图像道路特征提取算法[J]. 雷达学报, 2014, 3(3): 352–360. doi: 10.3724/SP.J.1300.2013.13059

    LU Pingping, DU Kangning, YU Weidong, et al. Feature fusion based road extraction for HJ-1-C SAR image[J]. Journal of Radars, 2014, 3(3): 352–360. doi: 10.3724/SP.J.1300.2013.13059
    [50] YANG Rong, PAN Zhenru, JIA Xiaoxue, et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1938–1958. doi: 10.1109/JSTARS.2021.3049851
    [51] CHEN Shanshan, WANG Haipeng, XU Feng, et al. Automatic recognition of isolated buildings on single-aspect SAR image using range detector[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 219–223. doi: 10.1109/LGRS.2014.2327125
    [52] 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1): 62–74. doi: 10.11834/jrs.20154108

    LIU Qian, YANG Le, LIU Qinhuo, et al. Review of forest above ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1): 62–74. doi: 10.11834/jrs.20154108
    [53] KRAUS T, KRIEGER G, BACHMANN M, et al. Spaceborne demonstration of distributed SAR imaging with TerraSAR-X and TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1731–1735. doi: 10.1109/LGRS.2019.2907371
    [54] TOPORKOV J V, PERKOVIC D, FARQUHARSON G, et al. Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2494–2502. doi: 10.1109/TGRS.2005.848603
    [55] FRASIER S J and CAMPS A J. Dual-beam interferometry for ocean surface current vector mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 401–414. doi: 10.1109/36.905248
  • 加载中
图(34) / 表(6)
计量
  • 文章访问数:  3079
  • HTML全文浏览量:  1377
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回