基于1比特量化的大规模MIMO雷达系统直接定位算法

张国鑫 易伟 孔令讲

张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062
引用本文: 张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062
ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062
Citation: ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062

基于1比特量化的大规模MIMO雷达系统直接定位算法

DOI: 10.12000/JR21062
基金项目: 国家自然科学基金(61771110),长江学者奖励计划(B17008),中央高校基本科研基金(ZYGX2016J031)
详细信息
    作者简介:

    张国鑫(1996–),男,山西大同人。现为电子科技大学信息与通信工程学院博士研究生。研究方向为雷达信号处理及目标定位

    易 伟(1983–),男,四川雅安人。现为电子科技大学教授,教育部青年长江学者。研究方向为雷达信号处理、微弱目标探测技术、目标跟踪、多传感器数据融合及资源智能管控

    孔令讲(1974–),男,河南南阳人。现为电子科技大学教授,博士生导师,长江学者特聘教授。研究方向为新体制雷达、统计信号处理、优化理论和算法、雷达信号处理、非合作信号处理技术和自适应阵列信号处理

    通讯作者:

    易伟 kusso@uestc.edu.cn

  • 责任主编:王鼎 Corresponding Editor: WANG Ding
  • 中图分类号: TN953

Direct Position Determination for Massive MIMO System with One-bit Quantization

Funds: The National Natural Science Foundation of China (61771110), The Chang Jiang Scholars Program (B17008), The Fundamental Research Funds of Central Universities (ZYGX2016J031)
More Information
  • 摘要: 1比特量化技术在大规模MIMO雷达系统中的应用使得系统成本、功耗及传输带宽显著降低。但这同时也对如何从1比特量化后的数据中提取目标高精度信息提出了严峻挑战。针对基于1比特量化的二次定位算法在低信噪比下定位精度低、鲁棒性差的问题,该文提出了一种基于1比特量化的大规模MIMO雷达系统目标直接定位算法。首先,通过将接收信号进行1比特量化,并推导基于1比特信号的概率分布,建立了关于目标位置的代价函数;其次,通过证明代价函数的凸性,利用梯度下降算法求解了回波中未知的信号参数;最后,根据最大似然估计实现了目标直接定位。仿真实验分析了所提算法的定位性能,结果表明,所提算法仅需传输相较于高精度采样(16比特为例)直接定位算法6.25%的通信带宽,同时其功耗仅为前者的0.1%。此外,与基于1比特量化的二次定位算法相比,所提算法在低信噪比下便可实现对目标位置的有效估计,并且其定位性能在低信噪比和低MIMO天线数量下均明显优于前者。同时,其性能会随着过采样技术的应用进一步提升。

     

  • 图  1  基于广域节点分布的大规模MIMO雷达系统定位场景

    Figure  1.  Location diagram of massive MIMO radar system based on wide-area node distribution

    图  2  1比特数字雷达射频采样前端

    Figure  2.  RF sampling front end of one-bit digital radar

    图  3  1bit-DPD算法流程图

    Figure  3.  Flow chart for 1bit-DPD algorithm

    图  4  不同信噪比下1bit-DPD算法代价函数平面

    Figure  4.  1bit-DPD cost function plane under different SNR

    图  5  不同信噪比下1bit-DPD与1bit-IDP有效估计率曲线

    Figure  5.  Effective estimation rate curves of 1bit-DPD and 1bit-IDP under different SNR

    图  6  不同信噪比下1bit-DPD与1bit-IDP以及16bit-DPD的定位性能对比图

    Figure  6.  Comparison of localization performance of 1bit-DPD, 1bit-IDP and 16bit-DPD under different SNR

    图  7  不同过采样因子v下1bit-DPD和1bit-IDP的定位性能对比图

    Figure  7.  Localization performance of 1bit-DPD and 1bit-IDP under different over-sampling factors v

    图  8  不同天线数量下1bit-DPD和1bit-IDP的定位性能

    Figure  8.  Localization performance of 1bit-DPD and 1bit-IDP under different number of base stations

    表  1  式(25)的梯度下降求解步骤

    Table  1.   The gradient descent solution for Eq. (25)

     初始化:$\tilde \alpha _{ {\rm{mn} } }^0$, $0 < \xi \le 1$, $0 < \zeta \le 1$
     迭代:对于$l = 0 \to {l_{\max }}$
     1:计算代价函数$\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)$和$\nabla \left( {\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)} \right)$;
     2:初始化步长${u^l} = {u_{{\rm{init}}} }$,更新
       $\tilde \alpha _{{\rm{mn}}}^{l + 1} = \tilde \alpha _{{\rm{mn}}}^l - {u^l}\nabla \left( {\Xi \left( {{{\tilde \alpha }_{{\rm{mn}}}}} \right)} \right)$;
     3:当$\Xi \left( {\tilde \alpha _{{\rm{mn}}}^{l + 1}} \right) > \Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right) - \xi {u^l}\left\| {\nabla \left( {\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)} \right)} \right\|_2^2$,令
       ${u^l} = \zeta {u_{{\rm{init}}} }$
     更新$\tilde \alpha _{{\rm{mn}}}^{l + 1} = \tilde \alpha _{{\rm{mn}}}^l - {u^l}\nabla \left( {\Xi \left( {{{\tilde \alpha }_{{\rm{mn}}}}} \right)} \right)$;
     4:满足停止条件,退出
    下载: 导出CSV

    表  2  数据量及功耗对比

    Table  2.   Comparison of data volume and power consumption

    算法单个采样点数据量功耗
    16bit-DPD2 Byte(实部/虚部)约为几瓦
    1bit-DPD1 bit(实部/虚部)约几毫瓦
    下载: 导出CSV
  • [1] LESTURGIE M. T06 — MIMO radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 33.
    [2] NORRDINE A, CETINKAYA H, and HERSCHEL R. Radar wave based positioning of spatially distributed MIMO radar antenna systems for near-field nondestructive testing[J]. IEEE Sensors Letters, 2020, 4(5): 5500804. doi: 10.1109/LSENS.2020.2989546
    [3] KHAMIDULLINA L, PODKURKOV I, and HAARDT M. Conditional and unconditional Cramér-Rao bounds for near-field localization in bistatic MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 3220–3234. doi: 10.1109/TSP.2021.3082469
    [4] SONG Haibo, WEN Gongjian, LIANG Yuanyuan, et al. Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors[J]. IEEE Transactions on Signal Processing, 2021, 69: 3088–3103. doi: 10.1109/TSP.2021.3081038
    [5] DONTAMSETTI S G and KUMAR R V R. A distributed MIMO radar with joint optimal transmit and receive signal combining[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 623–635. doi: 10.1109/TAES.2020.3027103
    [6] LA MANNA M and FUHRMANN D R. Cramér-Rao lower bounds comparison for 2D hybrid-MIMO and MIMO radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 404–413. doi: 10.1109/JSTSP.2016.2627187
    [7] HACK D E, PATTON L K, HIMED B, et al. Detection in passive MIMO radar networks[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2999–3012. doi: 10.1109/TSP.2014.2319776
    [8] ZHENG Yang, SHENG Min, LIU Junyu, et al. Exploiting AoA estimation accuracy for indoor localization: A weighted AoA-based approach[J]. IEEE Wireless Communications Letters, 2019, 8(1): 65–68. doi: 10.1109/LWC.2018.2853745
    [9] SHAO Huajie, ZHANG Xiaoping, and WANG Zhi. Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2580–2594. doi: 10.1109/TSP.2014.2314064
    [10] 刘振, 苏晓龙, 刘天鹏, 等. 基于矩阵差分的远场和近场混合源定位方法[J]. 雷达学报, 2021, 10(3): 432–442. doi: 10.12000/JR20145

    LIU Zhen, SU Xiaolong, LIU Tianpeng, et al. Matrix differencing method for mixed far-field and near-field source localization[J]. Journal of Radars, 2021, 10(3): 432–442. doi: 10.12000/JR20145
    [11] ZHANG Fengrui, GAO Lin, SUN Yimao, et al. Time-delay-based target localization in wireless sensor network with unknown noise covariance[J]. IEEE Sensors Letters, 2021, 5(1): 7000104. doi: 10.1109/LSENS.2020.3048417
    [12] JIA Tianyi, HO K C, WANG Haiyan, et al. Effect of sensor motion on time delay and Doppler shift localization: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5881–5895. doi: 10.1109/TSP.2019.2946025
    [13] WEN Fei, LIU Peilin, WEI Haichao, et al. Joint azimuth, elevation, and delay estimation for 3-D indoor localization[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4248–4261. doi: 10.1109/TVT.2018.2794322
    [14] 赵勇胜, 赵拥军, 赵闯. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报, 2016, 5(3): 302–311. doi: 10.12000/JR15133

    ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. Weighted least squares algorithm for single-observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars, 2016, 5(3): 302–311. doi: 10.12000/JR15133
    [15] AMAR A and WEISS A J. Localization of narrowband radio emitters based on Doppler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5500–5508. doi: 10.1109/TSP.2008.929655
    [16] BIANCHI V, CIAMPOLINI P, and DE MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 566–575. doi: 10.1109/TIM.2018.2851675
    [17] HOANG M T, YUEN B, DONG Xiaodai, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE Internet of Things Journal, 2019, 6(6): 10639–10651. doi: 10.1109/JIOT.2019.2940368
    [18] TIRER T and WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192–196. doi: 10.1109/LSP.2015.2503921
    [19] TIRER T and WEISS A J. Performance analysis of a high-resolution direct position determination method[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 544–554. doi: 10.1109/TSP.2016.2621729
    [20] MA Fuhe, LIU Zhangmeng, and GUO Fucheng. Distributed direct position determination[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14007–14012. doi: 10.1109/TVT.2020.3025386
    [21] XIA Wei, LIU Wei, and ZHU Lingfeng. Distributed adaptive direct position determination based on diffusion framework[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 28–38.
    [22] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. doi: 10.1109/LSP.2004.826501
    [23] PICARD J S and WEISS A J. Direct position determination sensitivity to NLOS propagation effects on Doppler-shift[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3870–3881. doi: 10.1109/TSP.2019.2923152
    [24] 吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040

    WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040
    [25] 陈芳香, 易伟, 周涛, 等. 基于分数阶傅里叶变换的多辐射源被动直接定位算法[J]. 雷达学报, 2018, 7(4): 523–530. doi: 10.12000/JR18027

    CHEN Fangxiang, YI Wei, ZHOU Tao, et al. Passive direct location determination for multiple sources based on FRFT[J]. Journal of Radars, 2018, 7(4): 523–530. doi: 10.12000/JR18027
    [26] LI Bin, WANG Shusen, FENG Zhiyong, et al. Fast pseudo-spectrum estimation for automotive massive MIMO radar[J]. IEEE Internet of Things Journal, 2021, in press. doi: 10.1109/JIOT.2021.3052512
    [27] AHMED A M, AHMAD A A, FORTUNATI S, et al. A reinforcement learning based approach for multi-target detection in massive MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, in press. doi: 10.1109/TAES.2021.3061809
    [28] LI Bin, WANG Shusen, ZHANG Jun, et al. Fast randomized-MUSIC for Mm-wave massive MIMO radars[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1952–1956. doi: 10.1109/TVT.2021.3051266
    [29] FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
    [30] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761
    [31] GOKCEOGLU A, BJÖRNSON E, LARSSON E G, et al. Spatio-temporal waveform design for multiuser massive MIMO downlink with 1-bit receivers[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 347–362. doi: 10.1109/JSTSP.2016.2628347
    [32] CIUONZO D, JAVADI S H, MOHAMMADI A, et al. Bandwidth-constrained decentralized detection of an unknown vector signal via multisensor fusion[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 744–758. doi: 10.1109/TSIPN.2020.3037832
    [33] WANG Xueqian, LI Gang, and VARSHNEY P K. Detection of sparse stochastic signals with quantized measurements in sensor networks[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2210–2220. doi: 10.1109/TSP.2019.2903034
    [34] 陈莹, 钟菲, 郭树旭. 非合作跳频信号参数的盲压缩感知估计[J]. 雷达学报, 2016, 5(5): 531–537. doi: 10.12000/JR15106

    CHEN Ying, ZHONG Fei, and GUO Shuxu. Blind compressed sensing parameter estimation of non-cooperative frequency hopping signal[J]. Journal of Radars, 2016, 5(5): 531–537. doi: 10.12000/JR15106
    [35] KILIÇ B, GÜNGÖR A, KALFA M, et al. Sensing matrix design for compressive sensing based direction of arrival estimation[C]. 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 2020: 1–4. doi: 10.1109/SIU49456.2020.9302073.
    [36] DING Wenbo, YANG Fang, PAN Changyong, et al. Compressive sensing based channel estimation for OFDM systems under long delay channels[J]. IEEE Transactions on Broadcasting, 2014, 60(2): 313–321. doi: 10.1109/TBC.2014.2315913
    [37] REN Jiaying and LI Jian. One-bit digital radar[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 1142–1146. doi: 10.1109/ACSSC.2017.8335529.
    [38] LI Yongzhi, TAO Cheng, SECO-GRANADOS G, et al. Channel estimation and performance analysis of one-bit massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 4075–4089. doi: 10.1109/TSP.2017.2706179
    [39] DABEER O and KARNIK A. Signal parameter estimation using 1-bit dithered quantization[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5389–5405. doi: 10.1109/TIT.2006.885461
    [40] DABEER O and MASRY E. Multivariate signal parameter estimation under dependent noise from 1-bit dithered quantized data[J]. IEEE Transactions on Information Theory, 2008, 54(4): 1637–1654. doi: 10.1109/TIT.2008.917637
    [41] FANG Jun, LIU Yumeng, LI Hongbin, et al. One-bit quantizer design for multisensor GLRT fusion[J]. IEEE Signal Processing Letters, 2013, 20(3): 257–260. doi: 10.1109/LSP.2013.2243144
    [42] LI Xiaoying, FANG Jun, LIU Yumeng, et al. One-bit quantization for multi-sensor GLRT detection of unknown deterministic signals[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 4251–4255. doi: 10.1109/ICASSP.2013.6638461.
    [43] BAR-SHALOM O and WEISS A J. DOA estimation using one-bit quantized measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 868–884. doi: 10.1109/TAES.2002.1039405
    [44] XI Feng, XIANG Yijian, ZHANG Zhen, et al. Joint angle and Doppler frequency estimation for MIMO radar with one-bit sampling: A maximum likelihood-based method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4734–4748. doi: 10.1109/TAES.2020.3000841
    [45] ZHU Si, SUN Fei, and CHEN Xiaohui. Joint UWB TOA and AOA estimation under 1-bit quantization resolution[C]. 2013 IEEE/CIC International Conference on Communications in China (ICCC), Xi’an, China, 2013: 321–326. doi: 10.1109/ICCChina.2013.6671136.
    [46] YI Wei, ZHOU Tao, AI Yue, et al. Suboptimal low complexity joint multi-target detection and localization for non-coherent MIMO radar with widely separated antennas[J]. IEEE Transactions on Signal Processing, 2020, 68: 901–916. doi: 10.1109/TSP.2020.2968282
    [47] HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [48] HE Qian, BLUM R S, and HAIMOVICH A M. Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3661–3680. doi: 10.1109/TSP.2010.2044613
    [49] RIBEIRO A and GIANNAKIS G B. Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1131–1143. doi: 10.1109/TSP.2005.863009
    [50] WANG Wei and LI Hongbin. Distributed maximum likelihood estimation for bandwidth-constrained wireless sensor networks[C]. 2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop, Teton National Park, USA, 2006: 506–510. doi: 10.1109/DSPWS.2006.265475.
    [51] BOYD S P and VANDENBERGHE L. Convex Optimization[M]. New York: Cambridge University Press, 2004.
    [52] HAN Xiaodong, SHU Ting, HE Jin, et al. Joint angle-frequency estimation using nested sampling with one-bit quantization[J]. Circuits, Systems, and Signal Processing, 2020, 39(8): 4187–4197. doi: 10.1007/s00034-020-01351-8
    [53] OPPENHEIM A V and SCHAFER R W. Discrete-Time Signal Processing[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2009: 140–214.
    [54] ZAMIR R. A proof of the Fisher information inequality via a data processing argument[J]. IEEE Transactions on Information Theory, 1998, 44(3): 1246–1250. doi: 10.1109/18.669301
    [55] SAMPFORD M R. Some inequalities on mill’s ratio and related functions[J]. The Annals of Mathematical Statistics, 1953, 24(1): 130–132. doi: 10.1214/aoms/1177729093
    [56] PINELIS I. Exact bounds on the inverse mills ratio and its derivatives[J]. Complex Analysis and Operator Theory, 2019, 13(4): 1643–1651. doi: 10.1007/s11785-018-0765-x
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2240
  • HTML全文浏览量:  1601
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-09-01
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回